Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of constructing delay lines on the basis of surface acoustic waves and their application to single-mode oscillators. As a result of a theoretical analysis concrete delay lines are proposed.

In the contribution, there is presented a theory of designing a symmetrical mismatched and matched delay line for a single-mode oscillator of electrical signals on the basis of which there were designed and fabricated acoustic-electronic components for sensors of non-electrical quantities.

From the experimental results it can be stated that all of six designed and fabricated delay lines can be effectively used in the construction of single-mode oscillators.

Go to article

Authors and Affiliations

Milan Šimko
Miroslav Gutten
Milan Chupáč
Daniel Korenčiak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents theoretical and experimental analyses of a possible effect of the short-circuit forces on the transformer winding. The first part of the paper is focused on creation and activity of the radial and axial forces during a short circuit. It shows dimensions, direction and − of course − the resulting mechanical stress. The presented equation shows basic dependencies of these mechanical forces created in the transformer winding. Finally, the paper presents experimental methods of diagnosing and analysing the effects of short-circuit forces on the transformer winding.

Go to article

Authors and Affiliations

Miroslav Gutten
Richard Janura
Milan Šebök
Daniel Korenčiak
Matej Kučera
Download PDF Download RIS Download Bibtex

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.

Go to article

Authors and Affiliations

Milan Šimko
Miroslav Gutten
ORCID: ORCID
Milan Chupáč
Matej Kučera
Adam Glowacz
ORCID: ORCID
Eliasz Kantoch
Hui Liu
Frantisek Brumercik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Fault diagnosis techniques of electrical motors can prevent unplanned downtime and loss of money, production, and health. Various parts of the induction motor can be diagnosed: rotor, stator, rolling bearings, fan, insulation damage, and shaft. Acoustic analysis is non-invasive. Acoustic sensors are low-cost. Changes in the acoustic signal are often observed for faults in induction motors. In this paper, the authors present a fault diagnosis technique for three-phase induction motors (TPIM) using acoustic analysis. The authors analyzed acoustic signals for three conditions of the TPIM: healthy TPIM, TPIM with two broken bars, and TPIM with a faulty ring of the squirrel cage. Acoustic analysis was performed using fast Fourier transform (FFT), a new feature extraction method called MoD-7 (maxima of differences between the conditions), and deep neural networks: GoogLeNet, and ResNet-50. The results of the analysis of acoustic signals were equal to 100% for the three analyzed conditions. The proposed technique is excellent for acoustic signals. The described technique can be used for electric motor fault diagnosis applications.
Go to article

Authors and Affiliations

Adam Glowacz
1
ORCID: ORCID
Maciej Sulowicz
1
ORCID: ORCID
Jarosław Kozik
2
ORCID: ORCID
Krzysztof Piech
2
ORCID: ORCID
Witold Glowacz
3
ORCID: ORCID
Zhixiong Li
4 5
ORCID: ORCID
Frantisek Brumercik
6
ORCID: ORCID
Miroslav Gutten
7
ORCID: ORCID
Daniel Korenciak
7
Anil Kumar
8
ORCID: ORCID
Guilherme Beraldi Lucas
9
ORCID: ORCID
Muhammad Irfan
10
ORCID: ORCID
Wahyu Caesarendra
4 11
ORCID: ORCID
Hui Lui
12
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Electrical and Computer Engineering, Department of Electrical Engineering, ul. Warszawska 24,31-155 Kraków, Poland
  2. AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of PowerElectronics and Energy Control Systems, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  3. AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of AutomaticControl and Robotics, al. A. Mickiewicza 30, 30-059 Krakw, Poland
  4. Faculty of Mechanical Engineering, Opole University of Technology, Opole 45-758, Poland
  5. University of Religions and Denomina, Qom, Iran
  6. University of Zilina, Faculty of Mechanical Engineering, Department of Design and Machine Elements, Univerzitna 1, 010 26 Zilina, Slovakia
  7. University of Zilina, Faculty of Electrical Engineering and Information Technology, 8215/1 Univerzitna, 01026 Zilina, Slovakia
  8. Wenzhou University, College of Mechanical and Electrical Engineering, Wenzhou, 325 035, China
  9. Sao Paulo State University, Department of Electrical Engineering, Av. Eng. Luís Edmundo Carrijo Coube, 14-01, Bauru, Sao Paulo, Brazil
  10. Najran University Saudi Arabia, Electrical Engineering Department, College of Engineering, Najran 61441, Saudi Arabia
  11. Faculty of Integrated Technologies, Universiti Brunei Darusalam, Jalan Tungku Link, Gadong BE1410, Brunei
  12. China Jiliang University, College of Quality and Safety Engineering, Hangzhou 310018, China

This page uses 'cookies'. Learn more