Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Stepped spillway is hydraulic structure designed to dissipate the excess in kinetic energy at the downstream of dams and can reduce the size of stilling basin at the toe of the spillway or chute. The flow on a stepped spillway is characterisedby the large aeration that can prevent or reduce the cavitation damage. The air entrainment starts where the boundary layer attains the free surface of flow; this point is called “point of inception”. Within this work the inception point is determined by using software Ansys Fluent where the volume of fluid (VOF) model is used as a tool to track the free surface thereby the turbulence closure is derived in the k – ε turbulence standard model. This research aims to find new formulas for de-scribe the variation of water depth at step edge and the positions of the inception point, at the same time the contour map ofvelocity, turbulent kinetic energy and strain rate are presented. The found numerical results agree well with experimental results like the values of computed and measured water depth at the inception point and the numerical and experimental inception point locations. Also, the dimensionless water depth profile obtained by numerical method agrees well with that of measurement. This study confirmed that the Ansys Fluent is a robust software for simulating air entrainment and explor-ing more characteristics of flow over stepped spillways.

Go to article

Authors and Affiliations

Chakib Bentalha
Mohammed Habi
Download PDF Download RIS Download Bibtex

Abstract

During the last few years, the City of Bechar in Algeria has witnessed some extreme events, such as the great flood of the year 2008 in which an exceptional amount of rain was recorded with a flow rate of 830 m3∙s–1 (hwater = 4 m, b = 200 m); similar flooding also occurred in 2012 and 2014. The problem is that most of the City of Bechar has an urban sprawl that extends to the banks of Wadi Bechar, which represents a huge risk for the lives of the inhabitants of the region. The present work aims to assess the flood risk through flood hazard mapping. This method consists in determining the flow rates for the return periods of 25 years (Q25 = 388.6 m3∙s–1, hwater = 3.5 m, b = 200 m, Sspot = 55.35 ha), 50 years (Q50 = 478.3 m3∙s–1, hwater = 5 m, b = 200 m, Sspot = 66.48 ha) and 100 years (Q100 = 567.3 m3∙s–1, hwater = 7 m, b = 200 m, Sspot = 133 ha). For this, it is necessary to adjust the flow rates using Gumbel law along with some computer supports such as HEC-RAS, HEC- -GeoRAS and ArcGis for mapping the event. Finally, this work enables us to determine the zones exposed to risk of flooding and to classify them according to the flood water height.

Go to article

Authors and Affiliations

Abdelghani Bekhira
Mohammed Habi
Boutkhil Morsli

This page uses 'cookies'. Learn more