Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Heat consumption and steel loss for scale determine the costs of a heating process. The heating rate influences both. This paper evaluates the heating rate of a long charge made of three various materials, depending on the changes of the furnace atmosphere on the rotary furnace circumference. Numerical computing was performed based on a formulated heat transfer model in the rotary furnace chamber, while considering the growth of the scale layer. One heating curve was selected, which has allowed the heating time to be reduced by 36% while limiting the scale loss by 40%. It was also shown that the thermal stresses and strains should not lead to fractures of the charge heated.
Go to article

Authors and Affiliations

B. Hadała
1
ORCID: ORCID
M. Rywotycki
1
ORCID: ORCID
Z. Malinowski
1
ORCID: ORCID
Sz. Kajpust
2
S. Misiowiec
2

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Zarmen FPA Sp. z o.o., 39 Filarskiego Str., 47-330, Zdzieszowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncertainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate temperature below 100°C.
Go to article

Authors and Affiliations

B. Hadała
1
ORCID: ORCID
Z. Malinowski
1
ORCID: ORCID
A. Gołdasz
2
ORCID: ORCID
A. Cebo-Rudnicka
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more