Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of flux type and amounts on recovery behavior of aluminum alloy during the melting process of Al can scrap. The heat treatment was conducted to remove the coating layer on the surface of can scrap at 500°C for 30 min. The molten metal treatment of the scrap was performed at 750°C in a high-frequency induction furnace with different flux types and amounts. It was observed that the optimum condition for recovery of Al alloy was to add about 3 wt.% flux with a salt and MgCl2 mixing ratio of 70:30 during melting process. The mechanical properties of recovered Al alloy were about 254.8 MPa, which is similar to that of the virgin Al5083 alloy.
Go to article

Bibliography

[1] Y. Nam, J. Choi, Y.-C. Jang, J.-H. Lee, J. of Korea Society of Waste Management 33 (1), 29 (2016).
[2] E .-K. Jeon, J.-Y. Park, I.-M. Park, J. Korea Foundry Society 27 (1), 20 (2007).
[3] V . Güley, N. Ben Khalifa, A.E. Tekkaya, Int. J. Mater. Form. 3, 853 (2010).
[4] J. Cui, H.J. Roven, Trans. Nonferrous Met. Soc. China 20, 2057 (2010).
[5] M .A. Rabah, Waste Manage. 23, 173 (2003).
[6] S .N. Ab Rahim, M.A. Lajis, S. Ariffin, Procedia CIRP 26, 761 (2015).
[7] S . Capuzzi, G. Timelli, Metals 8, 249 (2018).
[8] A. Abdulkadir, A. Ajayi, M.I. Hassan, Energy Procedia 75, 2009 (2015).
[9] C. Han, S.H. Son, B.-D. Ahn, D.-G. Kim, M.S. Lee, Y.H. Kim, J. of Korean Inst. of Resources Recycling 26 (4), 71 (2017).
[10] M .A Bae, H.D. Kim, M.S. Lee, J. Korea Acad. Industr. Coop. Soc. 14 (10), 4672 (2013).
[11] S .O. Adeosun, M.A. Usman, W.A. Ayoola, I.O. Sekunowo, ISRN Polymer Sci. 2012, 1 (2012).
[12] T.A. Utigard, K. Friesen, R.R. Roy, J. Lim, A. Silny, C. Dupuis, JOM 50, 38 (1998).
[13] D. Bajarea, A. Korjakinsa, J. Kazjonovsa, I. Rozenstrauhab, J. Eur. Ceram. Soc. 32 (1), 141 (2012).
[14] O . Majidi, S.G. Shabestari, M.R. Aboutalebi, J. Mater. Process. Technol. 182, 450 (2007).
[15] S . Begum, J. Chem. Soc. Pak. 35 (6), 1490 (2013).
[16] B. Wan, W. Li, F. Liu, T. Lu, S. Jin, K. Wang, A. Yi, J. Tian, W. Chen, J. Mater. Res. Technol. 9 (3), 3447 (2020).
[17] J.H. L. V. Linden, D.L. Stewart Jr., Essential Readings in Light Metals 3, 173 (2013).
[18] T.A. Utigard, R.R. Roy, K. Friesen, High Temp. Mater. Process. 20, 303 (2001).
Go to article

Authors and Affiliations

Chulwoong Han
1
ORCID: ORCID
Yong Hwan Kim
1
ORCID: ORCID
Dae Geun Kim
2
ORCID: ORCID
Man Seung Lee
3
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing & Mat erials, 156 Gaetbeol Rd., Yeonsu-gu, Incheon,406-840, Korea
  2. Institute for Advanced Engineering Materials Science and Chemical Engineering Center , Korea
  3. Mokpo National University, Department of Advanced Materials Science and Engineering, Korea
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the recovery behavior of valuable metals (Co, Ni, Cu and Mn) in spent lithium ion-batteries based on Al2O3-SiO2-CaO-Fe2O3 slag system via DC submerged arc smelting process. The valuable metals were recovered by 93.9% at the 1250℃ for 30 min on the 20Al2O3-40SiO2-20CaO-20Fe2O3 (mass%) slag system. From the analysis of the slag by Fourier-transform infrared spectroscopy, it was considered that Fe2O3 and Al2O3 acted as basic oxides to depolymerize SiO4 and AlO4 under the addition of critical 20 mass% Fe2O3 in 20Al2O3-40SiO2-CaO-Fe2O3 (CaO + Fe2O3 = 40 mass%). In addition, it was observed that the addition of Fe2O3 ranging between 20 and 30 mass% lowers the melting point of the slag system.
Go to article

Bibliography

[1] S. Al-Thyabat, T. Nakamura, E. Shibata, A. Iizuka, Minerals Engineering 45, 4-17 (2013).
[2] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, Journal of Power Sources 226, 272-288 (2013).
[3] X. Wang, G. Gaustad, C.-W. Babbitt, C. Bailey, Journal of Environmental Management 135, 126-134 (2014).
[4] A. Boyden, V.-K. Soo, M. Doolan, Procedia CIRP 48, 188-193 (2016).
[5] X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, Engineering 4, 361-370 (2018).
[6] T.-G. Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Journal of Power Sources 207, 173-182 (2012).
[7] G . Wu, S. Seebold, E. Yazhenskikh, K. Hack, M. Müller, Fuel Processing Technology 171, 339-349 (2018).
[8] M.-L. Pearce, J.-F. Beisler, Journal of The American Ceramic Society 49, 547-551 (1966).
[9] N. Saito, N. Hori, K. Nakashima, K. Mori, Metallurgical and Materials Transactions B 34B, 509-516 (2003).
[10] M. Nakamoto, Y. Miyanayashi, L, Holappa, T. Tanaka, ISIJ International 47, 1409-1415 (2007).
[11] H . Park, J.-Y. Park, G.-H. Kim, I. Sohn, Steel Research Int. 83, 150-156 (2012).
[12] H . Kim, W.-H. Kim, I. Sohn, D.-J. Min, Steel Research Int. 81, 261-264 (2010).
[13] J.-H. Park, D.-J. Min, H.-S. Song, Metallurgical and Materials Transactions B 35B, 269-275 (2004).
[14] G .-H. Cartledge, The Journal of the American Chemical Society 50, 2855-2863(1928).
[15] D. Wang, L. Jin, Y. Li, B. Wei, D. Yao, T. Wang, H. Hu, Fuel Processing Technology 191, 20-28 (2019).
[16] J. Pesl, R.-H. Eric, Minerals Engineering 15, 971-984 (2002).
[17] S. Wu, J. Xu, S. Yang, Q. Zhou, L. Zhang, ISIJ international 50, 1032-1039 (2010).
[18] X.-J. Zhai, N.-J. Li, X. Zhang, F.-U. Yan, L. Jiang, Trans. Nonferrous Met. Soc. China 21, 2117-2121 (2011).
[19] G . Ren, S. Xiao, M. Xie, PAN. Bing, C. Jian, F. Wang, X. Xia, Trans. Nonferrous Met. Soc. China 27, 450-456 (2017).
[20] V . Rayapudi, S. Agrawal, N. Dhawan, Minerals Engineering 138, 204-214 (2019).
[21] K. Prabriputaloong, M.-R. Piggott, Journal of the American Ceramic Society 56, 177-180 (1973).
[22] C. Hamann, D. Stoffler, W.-U. Reimold, Geochimica et Cosmochimica Acta 192, 295-317 (2016).
Go to article

Authors and Affiliations

Tae Boong Moon
1 2
ORCID: ORCID
Chulwoong Han
2
ORCID: ORCID
Soong Keun Hyun
1
ORCID: ORCID
Sung Cheol Park
2
ORCID: ORCID
Seong Ho Son
2
ORCID: ORCID
Man Seung Lee
3
ORCID: ORCID
Yong Hwan Kim
2
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing and Materials Technology Incheon, 156, Gaetbeol Rd., Yeonsu-gu, Incheon, 406-840, Korea
  3. Mokpo National University, Department of Materials Science and Engineering Mokpo, Korea

This page uses 'cookies'. Learn more