Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the extra-thick coal seams and multi-layered hard roofs, the longwall hydraulic support yielding, coal face spalling, strong deformations of goaf-side entry, and severe ground pressure dynamic events typically occur at the longwall top coal caving longwall faces. Based on the Key strata theory an overburden caving model is proposed here to predict the multilayered hard strata behaviour. The proposed model together with the measured stress changes in coal seam and underground observations in Tongxin coal mine provides a new idea to analyse stress changes in coal and help to minimise rock bursts in the multi-layered hard rock ground. Using the proposed primary Key and the sub-Key strata units the model predicts the formation and instability of the overlying strata that leads to abrupt dynamic changes to the surrounding rock stress. The data obtained from the vertical stress monitoring in the 38 m wide coal pillar located adjacent to the longwall face indicates that the Key strata layers have a significant influence on ground behaviour. Sudden dynamically driven unloading of strata was caused by the first caving of the sub-Key strata while reloading of the vertical stress occurred when the goaf overhang of the sub-Key strata failed. Based on this findings several measures were recommended to minimise the undesirable dynamic occurrences including pre-split of the hard Key strata by blasting and using the energy consumption yielding reinforcement to support the damage prone gate road areas. Use of the numerical modelling simulations was suggested to improve the key theory accuracy.

Go to article

Authors and Affiliations

Zhijie Zhu
Yunlong Wu
Jun Han
Ying Chen
Download PDF Download RIS Download Bibtex

Abstract

In this study, decomposition and densification behavior of PbAlNbO3-PbZrTiO3 (PAN-PZT) ceramics were characterized for powder injection molding process. Thermal gravity analysis and in-situ dilatometer experiment were carried out to construct master curve. Based on master curve model approach, one-combined master debinding curve (MDC) and master sintering curve (MSC) were constructed for piezoelectric PAN-PZT ceramics. Derived curves matched well with the experimental data. Process optimization and material development will be conducted based on characterization of master curve parameters.

Go to article

Authors and Affiliations

Jun Sae Han
Jae Man Park
Seong Jin Park

This page uses 'cookies'. Learn more