Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Considering the low efficiency during the process of traditional calibration for digital-display vibrometers, an automatic calibration system for vibrometers based on machine vision is developed. First, an automatic vibration control system is established on the basis of a personal computer, and the output of a vibration exciter on which a digital-display vibrometer to be calibrated is installed, is automatically adjusted to vibrate at a preset vibration level and a preset frequency. Then the display of the vibrometer is captured by a digital camera and identified by means of image recognition. According to the vibration level of the exciter measured by a laser interferometer and the recognized display of the vibrometer, the properties of the vibrometer are calculated and output by the computer. Image recognition algorithms for the display of the vibrometer with a high recognition rate are presented, and the recognition for vibrating digits and alternating digits is especially analyzed in detail. Experimental results on the built-up system show that the prposed image recognition methods are very effective and the system could liberate operators from boring and intense calibration work for digital-display vibrometers

Go to article

Authors and Affiliations

Wen He
Guanhua Xu
Zuochao Rong
Gen Li
Min Liu
Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop ‒ i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol ‒ for secure key distribution leads to information theoretic security levels superior to those of today’s quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).

Go to article

Authors and Affiliations

Robert Mingesz
Laszlo Bela Kish
Zoltan Gingl
Claes-Göran Granqvist
He Wen
Ferdinand Peper
Travis Eubanks
Gabor Schmera
Download PDF Download RIS Download Bibtex

Abstract

In order to control joints of manipulators with high precision, a position tracking control strategy combining fractional calculus with iterative learning control and sliding mode control is proposed for the control of a single joint of manipulators. Considering the coupling between joints of manipulators, a fractional-order iterative sliding mode cross-coupling control strategy is proposed and the theoretical proof of its progressive stability is given. The paper takes a two-joint manipulator as the research object to verify the control strategy of a single-joint manipulator. The results show that the control strategy proposed in this paper makes the two-joint mechanical arm chatter less and the tracking more accurate. The synchronous control of the manipulator is verified by a three-joint manipulator. The results show that the angular displacement adjustment times of the three-joint manipulator are 0.11 s, 0.31 s and 0.24 s, respectively. 3.25 s > 5 s, 3.15 s of a PD cross-coupling control strategy; 2.85 s, 2.32 s, 4.22 s of a PD iterative cross-coupling control strategy; 0.14 s, 0.33 s, 0.28 s of a fractional-order sliding mode cross-coupling control strategy. The root mean square error of the position error of the designed control strategy is 6.47 × 10-6 rad, 3.69 × 10-4 rad, 6.91 × 10-3 rad, respectively. The root mean square error of the synchronization error is 3.96 × 10-4 rad, 1.36 × 10-3 rad, 7.81 × 10-3 rad, superior to the other three control strategies. The results illustrate the effectiveness of the proposed control method.

Go to article

Authors and Affiliations

Xin Zhang
Wen-Ru Lu
Liang Zhang
Wen-Bo Xu
Download PDF Download RIS Download Bibtex

Abstract

Coexisting microorganisms are abundant in nature. Plant growth promoting rhizobacteria (PGPR) is a group of beneficial microorganism living around the roots of plants which are able to confer beneficial effects on plant growth. Streptomyces sp. is a gram-positive bacteria as PGPR that can promote plant growth and enhance tolerance in adverse environment. This research was aimed to study the effects of plant growth promotion and stress tolerance of Streptomyces sp. in Arabidopsis and Brassica sp. The amount of indole-acetic acid (IAA) and phosphate solubility were assessed from isolated bacterial. Plant growth promotion was examined in 10-days old seedling with three independent experiments. Our results showed that Streptomyces sp. produced moderate levels of IAA and it was able to solubilize phosphate. Inoculation of Streptomyces sp. enhanced lateral root number, fresh weight and chlorophyll content in Arabidopsis thaliana. Moreover, the inoculation of Streptomyces sp. significantly increased vegetative growth on Arabidopsis and Brassica sp. by producing higher fresh weight and chlorophyll content. Streptomyces sp. also enhanced tolerance to abiotic stress in Arabidopsis and Brassica sp. by increasing fresh weight under condition of salt and heat stress. Under salt stress, inoculation of Streptomyces sp. in Arabidopsis induced activity of catalase enzyme and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) production. In the molecular levels, Streptomyces sp. induced protein accumulations in Arabidopsis including nitrogen assimilation (GS1), carbohydrate metabolism (cFBPase), and the light-harvesting chlorophyll (Lhcb1) protein.

Go to article

Authors and Affiliations

Windy Manullang
Huey-wen Chuang
Download PDF Download RIS Download Bibtex

Abstract

Accurate and fast access to Vernier caliper readings is a critical issue in automated verification of Vernier calipers. To address this problem, this paper proposes a machine vision-based algorithm for reading the Vernier caliper’s displayed value. The suggested method first employs threshold segmentation and template matching to determine the region of interest and obtain the main ruler digit position by alternate projection. Then, we apply the improved LeNet5 network to identify the main ruler of the Vernier caliper, Moreover, we developed the first and last inscription method for reading the decimal part of the Vernier caliper and established our data set for model training. Extensive experiments on reading the displayed value have demonstrated our algorithm’s accuracy, which achieves a displayed value reading accuracy of 100%. Compared to other methods, the proposed technique affords better stability and accuracy.
Go to article

Authors and Affiliations

Wen-Meng Chen
1
Hong-Xi Wang
1
Guan-Wei Wang
1
Wen-Hong Liang
1

  1. Xi’an Technological University, School of Electrical and Mechanical Engineering, Xi’an, Shanxi 710021 China
Download PDF Download RIS Download Bibtex

Abstract

A hot compression test was conducted on a Gleeble-3500 thermo-simulation machine to study the critical conditions and kinetics of dynamic recrystallization in a high-carbon tool steel. The critical conditions for the initiation of dynamic recrystallization were determined using the working-hardening theory. The quantitative relationship between the critical characteristics of dynamic recrystallization and the hot deformation parameters were elucidated based on two different methods:the apparent method and physically based method. It was found that the two methods both have high applicability for the investigated steel, but the physically-based method needs less parameters and makes it possible to study the effect of different factors. A dynamic recrystallization kinetics model was used to calculate the recrystallization volume fraction under different conditions. The calculation results matched well with the data obtained from the flow curves.

Go to article

Authors and Affiliations

Yong-Ji Zhang
Guang-Liang Wu
Shang-Wen Wu
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the study is to investigate the mechanical properties around an underground gas storage cavern in bedded salt rock. Firstly, considering the characteristics of the salt rock formation in China, the mechanical model was simplified into a hollow cylinder, which containing non-salt interlayer. In terms of elastic theory, Love displacement function was developed, and the elastic general solution of stress and deformation components were obtained after determining the undetermined coefficients. Under the same condition, numerical simulation was carried out. The validity of the elastic general solution is verified by comparing to numerical simulation results. Furthermore, Based on the feasible general elastic solution, viscoelastic solution was obtained through Laplace transformation and inverse Laplace transform, which could provide reference for the study on the stability and tightness of underground gas storage carven during operation to some extent.

Go to article

Authors and Affiliations

P. Xie
H.J. Wen
G.J. Wang
J. Hu
Download PDF Download RIS Download Bibtex

Abstract

The impact of the noise radiated from merchant ships on marine life has become an active area of research. In this paper, a methodology integrating observation at a single location and modelling the whole noise field in shallow waters is presented. Specifically, underwater radiated noise data of opportunistic merchant ships in the waters of Zhoushan Archipelago were collected at least one day in each month from January 2015 to November 2016. The noise data were analyzed and a modified empirical spectral source level (SSL) model of merchant ships was proposed inspired by the RANDI-3 model (Research Ambient Noise Directionality) methodology. Then combining the modified model with the realistic geoacoustic parameters and AIS data of observed merchant ships, the noise mappings in this area were performed with N×2D of Normal Mode calculations, in which the SSL of each ship was estimated using the modified model. The sound propagation at different receiving positions is different due to the shielding effect of islands and bottom topography. The methodology proposed in this paper may provide a reference for modelling shipping noise in shallow waters with islands and reefs.
Go to article

Authors and Affiliations

Zilong Peng
1
Fulin Zhou
2
Jun Fan
2
Bin Wang
2
ORCID: ORCID
Huabing Wen
1

  1. Institute of Noise and Vibration, School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
  2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

Dual-phase steels have received extensive attention in autobody frame manufacturing due to the resulting characteristics of an interesting combination of ductile ferrite and hard martensite. Moreover, the ductile ferrite and hard martensite lead to heterogeneous deformation in the boundary between the two phases. Then, geometrically necessary dislocations (GNDs) are created to accommodate a lattice mismatch due to the deformation incompatibility of the boundary in straining. In this study, a new empirical GND model is developed, in which the GND density is a function of local plastic deformation; the GND density is distributed in the phase boundary in accordance with an “S” model of material plastic strain. The boundary conditions are applied to define the parameters. The proposed model is verified with DP600 steel. The effects of the GNDs and the width between ferrite and martensite on the strain hardening of DP600 steel are evaluated.
Go to article

Authors and Affiliations

Gou Rui-Bin
1
Dan Wen-Jiao
1
Xu Yong-Sheng
2
Yu Min
3
Li Tong-Jie
1

  1. Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
  2. Shanghai Jiao Tong University, Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai 200240, China
  3. Anhui Science and Technology University, College of Architecture, Bengbu 233000, Anhui, China
Download PDF Download RIS Download Bibtex

Abstract

The longitudinal automatic carrier landing system (ACLS) control law is designed based on nonlinear dynamic inversion (NDI), which can reject air wake, decouple lateral states, and track the dynamic desired touchdown point (DTP). First of all, the nonlinear landing model of F/A−18 aircraft in the final approach is established, in which the parameters of the aerodynamic, control surfaces, and limited states are acquired. Second, the strategy of tracking the desired longitudinal trajectory through pitch angle control is adopted. The automatic power compensation system (APCS), pitch angle rate, pitch angle, and vertical position control loops are developed based on the adaptive NDI. The stable analysis and the principal description are derived in detail. Deck motion compensation (DMC) algorithm is designed by frequency response method. Third, the control parameters are optimized through the genetic algorithm. A fitness function integrated with velocity, angle of attack (AOA), pitch rate, pitch angle, and vertical position of the aircraft are proposed. Finally, integrated simulations are conducted on a semi-physical simulation platform. The results indicate that the adopted automatic landing control law can achieve both excellent performance and the ability to reject the air wake and lateral coupling.
Go to article

Bibliography

  1.  M. Ryota and S. Shinji, “Modeling of pilot landing approach control using stochastic switched linear regression model”, J. Aircr. 47(5), 1554–1558 (2010).
  2.  J. Tian, Y. Dai, H. Rong, and T.D. Zhao, “Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft”, Saf. Sci. 80, 56–65 (2015).
  3.  L.P. Wang, Q.D. Zhu, Z. Zhang, and R. Dong. “Modeling pilot behaviors based on discrete–time series during carrier-based aircraft landing”, J. Aircr. 53(6), 1922–1931 (2016).
  4.  J.M. Urnes and R.K. Hess, “Development of the F/A 18A automatic carrier landing system”, J. Guid. 8(3), 289-295 (1985).
  5.  Z.Y. Guan, Y.P. Ma, and Z.W. Zheng, “Prescribed performance control for automatic carrier landing with disturbance”, Nonlinear Dyn. 94(2), 1335–1349 (2018).
  6.  Z.Y. Zhen, S.Y. Jiang, and K. Ma, “Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering”, Aerosp. Sci. Technol. 81, 99–107 (2018).
  7.  Z.Y. Zhen, S.Y. Jiang, and J. Jiang, “Preview control and particle filtering for automatic carrier landing”, IEEE Trans. Aerosp. Electron. Syst. 54(6), 2662–2674 (2018).
  8.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  9.  R. Lungu and M. Lungu, “Automatic Landing system using neural networks and radio-technical subsystems”, Chin. J. Aeronaut. 30(1), 399–411 (2017).
  10.  M. Lungu and R. Lungu, “Automatic control of aircraft lateraldirectional motion during landing using neural networks and radio-technical subsystems”, Neurocomputing. 171, 471–481 (2016).
  11.  Q. Bian, B. Nener, T. Li, and X.M. Wang, “Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(12), 4482–4491 (2019).
  12.  F.Y. Zheng, Z.Y. Zhen, and H.J. Gong, “Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults”, J. Syst. Eng. Electron. 28(2), 322–337 (2017).
  13.  Z.Y. Zhen, C.J. Yu, and S.Y. Jiang, “Adaptive super-twisting control for automatic carrier landing of aircraft”, IEEE Trans. Aerosp. Electron. Syst. 56(2), 987–994 (2020).
  14.  Z.Y. Zhen, G. Tao, and C.J. Yu, “A multivariable adaptive control scheme for automatic carrier landing of UAV”, Aerosp. Sci. Technol. 92, 714–721 (2019).
  15.  L.P. Wang, Z. Zhang, Q.D. Zhu, and R. Dong, “Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(3), 1–17 (2019).
  16.  L.P. Wang, Z. Zhang, and Q.D. Zhu, “Automatic Flight Control Design Considering Objective and Subjective Risks during Carrier Landing”, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234(4), 446–461 (2020).
  17.  L.P. Wang, Z. Zhang, Q.D. Zhu, X.W. Jiang, “Lateral autonomous carrier-landing control with high-dimension landing risks consideration”, Aircr. Eng. Aerosp. Technol. 92(6), 837– 850 (2020).
  18.  T. Woodbury and J. Valasek, “Synthesis and flight test of an automatic landing controller using quantitative feedback theory”, J. Guid. Control Dyn. 39(9), 1994–2010 (2016).
  19.  B. Xu, D.W. Wang, Y.M. Zhang, and Z.K. Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects”, IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017).
  20.  D. Gawel, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Ac.: Tech. 65(5), 741–750 (2017).
  21.  J.N. Li and H.B. Duan, “Simplified brain storm optimization approach to control parameter optimization in F/A 18 automatic carrier landing system”, Aerosp. Sci. Technol. 42, 187–195 (2015).
  22.  R. Dou and H.B. Duan, “Levy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system”, Aerosp. Sci. Technol. 61, 11–20 (2017).
  23.  K. Lu and C.S. Liu, “A L-1 adaptive control scheme for UAV carrier landing using nonlinear dynamic inversion”, Int. J. Aerosp. Eng. 1–9 (2019).
  24.  M. Brodecki and K. Subbarao. Autonomous formation flight control system using in-flight sweet-spot estimation. J. Guid. Control Dyn. 38(6), 1083–1096 (2015).
  25.  H. Bouadi, F.M. Camino, and D. Choukroun, “Space–Indexed Control for Aircraft Vertical Guidance with Time Constraint”, J. Guid. Control Dyn. 37(4), 1103–1113 (2014).
  26.  P.K. Menon, S.S. Vaddi, and P. Sengupta, “Robust landingguidance law for impaired aircraft”, J. Guid. Control Dyn. 35(6), 1865−1877 (2012).
  27.  W.H. Chen, “Nonlinear Disturbance observer-enhanced dynamic inversion control of missiles”, J. Guid. Control Dyn. 26(1), 161–166 (2003).
  28.  I. Hameduddin and A.H. Bajodah, “Nonlinear generalised dynamic inversion for aircraft manoeuvring control”, Int. J. Control. 85(4), 437–450 (2012).
  29.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  30.  M. Lungu and R. Lungu, “Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion”, Asian J. Control. 19(1), 302–315 (2017).
  31.  R. Lungu and M. Lungu, “Automatic control of aircraft in lateral-directional plane during landing”, Asian J. Control. 18(2), 433–446 (2016).
  32.  A. Chakraborty, P. Seiler, and G. J. Balasz, “Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws”, AIAA Guidance, Navigation, and Control conference. Chicago, USA, 2009, pp.10–13.
  33.  A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A 18 flight controllers to the falling-leaf mode: nonlinear analysis”, J. Guid. Control Dyn. 34(1), 57–72 (2011).
  34.  J.M. Urnes, and R.K. Hess, “Development of the F/A-18A Automatic Carrier Landing System”, J. Guid. 8(3), 289–295 (1985).
Go to article

Authors and Affiliations

Lipeng Wang
1
ORCID: ORCID
Zhi Zhang
1
Qidan Zhu
1
Zixia Wen
2

  1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China
  2. AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, 710065, China
Download PDF Download RIS Download Bibtex

Abstract

Nickel slag has a high-content iron and is a secondary utilization resource with great development potential. The coal-based direct reduction is an innovative technology that can be used to utilize the iron resources in nickel slag. The effect of the particle size of nickel slag on the strength and the reduction of nickel slag-coal composite briquettes were investigated. Four samples with particle size of 75~106 μm, 106~150 μm, 150~270 μm, and >270 μm were selected. The drop strength increased 9.4 times and the compressive strength reached 281.1 N when the nickel slag particle size decreased from >270 μm to 75~106 μm. The reduction degree determined by the data from the thermogravimetric experiment indicated that its maximum was 79.545%. The reduction experiments performed at 1200°C for 45 minutes indicated that the nickel slag with particle sizes between 75~106 µm were appropriate for the reduction of the nickel slag-coal composite briquettes.

Go to article

Authors and Affiliations

Xiaoming Li
Yi Li
Xiangdong Xing
Yanjun Wang
ORCID: ORCID
Zhenyu Wen
Haibo Yang
Download PDF Download RIS Download Bibtex

Abstract

Electric shock accident is one of the main causes of fatal construction accidents. In this study, 101 electric shock accidents are analyzed to mine the potential associations of human errors. The modified Human Factors Analysis and Classification System (HFACS) is used to classify human factors of accident causes. Characteristics and potential causes of the accidents are identified by employing frequency analysis. Chi-square test and Apriori algorithm are utilized to explore the associations among the causes. Some significant association between any of two factors are shared. According to association rules using three criteria: support ( S), confidence ( C) and lift ( L), the two key paths are extracted based on the hierarchy of the HFACS. One is: organizational process loopholes → failed to correct problem → perceptual and decision errors ( S = 0•11, C = 0•423, L = 1•02), and the other is: organizational process loopholes!poor skill level ofworkers!routine violation ( S = 0•149, C = 0•789, L = 1•945). Managerial implications are proposed to prevent or reduce accidents based on interconnections of factors and key paths.
Go to article

Authors and Affiliations

Jue Li
1
ORCID: ORCID
Yuan Yu Wen
1
ORCID: ORCID

  1. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha, Hunan, P.R.China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical investigation into the high strength steel (HSS) welded Isection overall buckling performance with respect to the major axis under combined axial compression and bending. The validation of FE models compared with the existing test data to verify the appropriateness of the element division and boundary condition was firstly conducted. In line with the FE arrangement verified, separate 890 numerical models, covering a broader range of eight steel grades (460 MPa, 500 MPa, 550 MPa, 620 MPa, 690 MPa, 800 MPa, 890 MPa and 960 MPa), different overall slenderness and various eccentricities were designated. Subsequently, the comparison of the resistance prediction codified design rules in EN1993-1-1, ANSI/AISC 360-10 and GB50017-2017 was preferentially operated, by the instrumentality of the normalized axial compression-bending moment curves. The results graphically revealed that, the provision given in ANSI/AISC 360-10 concerned in the present work was the most loose, whereas, the corresponding content set out in EN1993-1-1 and GB50017-2017 was relatively on the safe side. Taking account of the FE results, the conservative shortcomings of the considered rules in EN1993-1-1 and GB50017-2017 were further highlighted. Especially, the disparity of EN1993-1-1 and numerical results was higher to 27%, from the perspective of a definition given in the present work. In contrast, the provision in ANSI/AISC 360-10 yielded a relatively accurate prediction, on average. Based on the numerical program, an alternative formula for the HSS welded I-section beam-columns with a general expression form was sought, which intimately reflected the effect of overall slenderness.
Go to article

Authors and Affiliations

Bin Huang
1
ORCID: ORCID
Wen-Fu Zhang
1
ORCID: ORCID

  1. School of Civil Engineering and Architecture, Nanjing Institute of Technology, 211167 Nanjing, China
Download PDF Download RIS Download Bibtex

Abstract

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important technical parameter in the design and renovation of mine ventilation. Calculations based on empirical formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to calculate the mine ventilation resistance coefficient by using a few representative data of air flows and node pressures is proposed in this study. The mathematical model of the inversion method is developed based on the principle of least squares. The measured pressure and the calculated pressure deviation along with the measured flow and the calculated flow deviation are considered while defining the objective function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear optimisation problem through the development of the model. A genetic algorithm (GA) was adopted to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion problem.

Go to article

Authors and Affiliations

Ke Gao
ORCID: ORCID
Lijun Deng
Jian Liu
Liangxiu Wen
Dong Wong
Zeyi Liu
Download PDF Download RIS Download Bibtex

Abstract

A laser measurement system for measuring straightness and parallelism error using a semiconductor laser was proposed. The designing principle of the developed system was analyzed. Addressing at the question of the divergence angle of the semiconductor laser being quite large and the reduction of measurement accuracy caused by the diffraction effect of the light spot at the longworking distance, the optical structure of the system was optimized through a series of simulations and experiments. A plano-convex lens was used to collimate the laser beam and concentrate the energy distribution of the diffraction effect. The working distance of the system was increased from 2.6 m to 4.6 m after the optical optimization, and the repeatability of the displacement measurement is kept within 2.2 m in the total measurement range. The performance of the developed system was verified by measuring the straightness of a machine tool through the comparison tests with two commercial multi-degree-of-freedom measurement systems. Two different measurement methods were used to verify the measurement accuracy. The comparison results show that during the straightness measurement of the machine tool, the laser head should be fixed in front of the moving axis, and the sensing part should move with the moving table of the machine tool. Results also show that the measurement error of the straightness measurement is less than 3 m compared with the commercial systems. The developed laser measurement system has the advantages of high precision, long working distance, low cost, and suitability for straightness and parallelism error measurement.
Go to article

Bibliography

[1] Schwenke, H., Knapp, W., & Haitjema, H. (2008). Geometric error measurement and compensation of machines – an update. CIRP Annals, 57(2), 660–675. https://doi.org/10.1016/j.cirp.2008.09.008
[2] Chen, Z., & Liu, X. (2020). A Self-adaptive interpolation method for sinusoidal sensors. IEEE Transactions on Instrumentation and Measurement, 69(10), 7675–7682. https://doi.org/10.1109/ TIM.2020.2983094
[3] Acosta, D., & Albajez, J. A. (2018). Verification of machine tools using multilateration and a geometrical approach. Nanomanufacturing and Metrology, 1(1), 39–44. https://doi.org/10.1007/ s41871-018-0006-y
[4] Chen, B. Y., Zhang, E. Z., & Yan, L. P. (2009). A laser interferometer for measuring straightness and its position based on heterodyne interferometry. Review of Scientific Instruments, 80(11), 115113. https://doi.org/10.1063/1.3266966
[5] Zhu, L. J., Li, L., Liu, & J. H. (2009). A method for measuring the guideway straightness error based on polarized interference principle. International Journal of Machine Tools and Manufacture, 49(3–4), 285–290. https://doi.org/10.1016/j.ijmachtools.2008.10.009
[6] Lin, S. T. (2001). A laser interferometer for measuring straightness. Optics & Laser Technology, 33(3), 195–199. https://doi.org/10.1016/S0030-3992(01)00024-X
[7] Jywe, W. Y., Liu, C. H., Shien, W. H., Shyu, L. H., & Fang, T. H. (2006). Development of a multidegree of freedoms measuring system and an error compensation technique for machine tools. Journal of Physics Conference Series, 48(1), 761–765. https://doi.org/10.1088/1742-6596/48/1/144
[8] Feng, Q. B., Zhang, B. & Cui, C. X. (2013). Development of a simple system for simultaneous measuring 6DOF geometric motion errors of a linear guide. Optics Express, 21(22), 25805–25819. https://doi.org/10.1364/OE.21.025805
[9] Liu, C. H., Chen, J. H., & Teng, Y. F. (2009). Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage. Review of Scientific Instruments, 80(11), 115105. https://doi.org/10.1063/1.3254018
[10] Fan, K. C. (2000). A laser straightness measurement system using optical fiber and modulation techniques. International Journal of Machine Tools Manufacture, 40(14), 2073–2081. https://doi.org/ 10.1016/S0890-6955(00)00040-7
[11] Hsieh, T. H., Chen, P. Y., & Jywe, W. Y. (2019). A geometric error measurement system for linear guideway assembly and calibration. Applied Sciences, 9(3), 574. https://doi.org/10.3390/app9030574
[12] Ni, J., & Huang, P. S. (1992). A multi-degree-of-freedom measuring system for CMM geometric errors. Journal of Manufacturing Science and Engineering, 114(3), 362–369. https://doi.org/10.1115/1.2899804
[13] Rahneberg, I., & Büchner, H. J. (2009). Optical system for the simultaneous measurement of twodimensional straightness errors and the roll angle. Proceedings of the International Society for Optics and Photonics, the Czech Republic, 7356. https://doi.org/10.1117/12.820634
[14] Chou, C., Chou, L. Y. & Peng, C. K. (1997). CCD-based CMM geometrical error measurement using Fourier phase shift algorithm. International Journal of Machine Tools and Manufacture, 37(5): 579–590. https://doi.org/10.1016/S0890-6955(96)00078-8
[15] Sun, C., Cai, S., & Liu, Y. (2020). Compact laser collimation system for simultaneous measurement of five-degree-of-freedom motion errors. Applied Sciences, 10(15), 5057. https://doi.org/10.3390/app10155057
[16] Huang, Y., Fan, Y., Lou, Z., Fan, K. C., & Sun, W. (2020). An innovative dual-axis precision level based on light transmission and refraction for angle measurement. Applied Sciences, 10(17), 6019. https://doi.org/10.3390/app10176019
[17] Born M., & Wolf E. (2013). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier. https://www.sciencedirect.com/book/9780080264820/ principles-of-optic
Go to article

Authors and Affiliations

Peng Xu
1
Rui Jun Li
1
Wen Kai Zhao
1
Zhen Xin Chang
1
Shao Hua Ma
1
Kuang Chao Fan
1

  1. Hefei University of Technology, School of Instrument Science and Opto-Electronics Engineering, Hefei, China
Download PDF Download RIS Download Bibtex

Abstract

Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0−5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
Go to article

Bibliography


Anaya-López J.L., Torres-Pacheco I., González-Chavira M., Garzon-Tiznado J.A., Pons-Hernandez J.L. 2003. Resistance to geminivirus mixed infections in mexican wild peppers. Journal American Society Horticultural Science 38 (2): 251–255. DOI: https://doi.org/10.21273/HORTSCI.38.2.251
Barchenger D.W., Jeeatid N., Lin S.W., Wang Y.W., Lin T.H., Chan Y.L., Kenyon L. 2019. A novel source of resistance to Pepper yellow leaf curl Thailand virus (PepYLCThV) (Begomovirus) in chile pepper. Journal American Society Horticultural Science 54 (12): 2146−2149. DOI: https://doi.org/10.21273/HORTSCI14484-19
Chiemsombat P., Srikamphung B., Yule S., Srinivasan R. 2018. Begomoviruses associated to pepper yellow Leaf curl disease in Thialand. Journal of Agricultural Research 3 (7): 000183. Food and Agriculture Organization. 2017. Agricultural Production: Primary crops. Available on: http://apps.fao.org. [Accessed: 25 January 2020]
Kumar R., Rai N., Kakpale N. 1999. Field reaction of some chilli genotypes for leaf curl virus in Chhattisgarh region of India. The Orissa Journal of Horticulture 27: 100−102. DOI: https://doi.org/10.18782/2320-7051.5471
Kumar S., Kumar S., Singh M., Singh A.K., Rai M. 2006. Identification of host plant resistant to pepper leaf curl virus in chilli (Capsicum species). Scientia Horticulturae 110: 359−361. DOI: https://doi.org/10.1016/j.scienta.2006.07.030
Kumar S., Kumar R., Kumar S., Singh A.K., Singh M., Rai A.B., Rai A.B. 2011. Incidence of leaf curl disease on capsicum germplasm under field conditions. Indian Journal of Agricultural Sciences 81: 187−189.
Mishra M.D., Raychaudhuri S.P., Jha A. 1963. Virus causing leaf curl of chilli (Capsicum annuum L.). International Journal of Microbiology 3: 73–76.
Rai V.P.R., Kumar S., Singh P., Kumar S., Singh M., Rai M. 2014. Monogenic recessive resistant to pepper by leaf curl virus in an interspecific cross of Capsicum. Scientia Horticulturae 172: 34−38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039
Sakata J.J., Shibuya Y., Sharma P., Ikegami M. 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-veindiseased ageratum in Indonesia. Archives of Virology 153 (12): 2307−2313. DOI: https://doi.org/10.1007/s00705-008-0254-z
Sangsotkaew Y., Jeeartid N., Siri N., Thummabenjapone P., Chatchawankanphanich O., Phuangrat B., Techawongstien S. 2018. Phenotypic responses of putative resistance chili cultivars infected by PepLCV with viruliferous whitefly transmission. Acta Horticulturae 67. DOI: https://doi.org/10.18690/978-961-286-045-5.54.
Shih S.L., Tsai W. S., Lee L.M., Wang J.T., Green S.K., Kenyon L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease 94 (5): 637. DOI: https://doi.org/10.1094/PDIS-94-5-0637B
Srivastava A., Mangal M., Saritha R.K., Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the Begomovirus causing chili leaf curl disease in India. Journal of Crop Protection 100: 177–185. DOI: https://doi.org/10.1016/j.cropro.2017.06.015
Tsai W., Shih S., Green S., Rauf A., Hidayat S., Jan F.J. 2006. Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease 90 (2): 247−247. DOI: https://doi.org/10.1094/PD-90-0247B
Tsai W.S., Shih S.L., Kenyon L., Green S.K., Jan F.J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathology 60: 787−799. DOI: https://doi.org/10.1111/j.1365-3059.2011.02424.x
Verlaan M.G., Hutton S.F., Ibrahem R.M., Kormelink R., Visser R.G.F., Scott J.W., Edwards J.D., Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–Dependent RNA polymerases. PLoS Genetics 9 (3): e1003399. DOI: https://doi.org/10.1371/journal.pgen.1003399
Zehra S.B., Ahmad A., Sharma A., Sofi S., Lateef A., Bashir Z., Husain M., Rathore J.P. 2017. Chilli leaf curl virus an emerging threat to chilli in India. Indian Journal of Pure and Applied Biosciences 5 (5): 404−414.
Go to article

Authors and Affiliations

Patcharaporn Suwor
1
ORCID: ORCID
Tawatchai Masirayanan
1
Hathairat Khingkumpungk
1
Wen Shi Tsai
2
Kanjana Saetiew
1
Suchila Techawongstien
3
Sanjeet Kumar
4
Somsak Kramchote
1

  1. Plant Production of Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  2. Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi, Taiwan
  3. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
  4. Pepper Breeding Section, Plant Geneticist and Breeder (Independent), India
Download PDF Download RIS Download Bibtex

Abstract

Through taking the cold rolling process as the research object, the three-dimensional finite element model of the strip rolling process is established by using ANSYS/LS-DYNA software. The actual rolling product data has strong consistency with the finite element simulation results. The rolling process is dynamically simulated, and the distribution curves of important rolling parameters such as equivalent stress, control efficiency coefficient, transverse rolling pressure, lateral thickness and work roll deflection is obtained. Based on summarizing the influence of rolling parameters on rolling deformation, the research results of this paper can play an important role in the actual rolling process control. The research results have certain guiding significance for the development and optimization of the rolling control system.
Go to article

Authors and Affiliations

Zhu-Wen Yan
1
ORCID: ORCID
Bao-Sheng Wang
1
ORCID: ORCID
He-Nan Bu
2
ORCID: ORCID
Hao Li
1
ORCID: ORCID
Lei Hong
1
ORCID: ORCID
Dian-Hua Zhang
3
ORCID: ORCID

  1. Nanjing Institute of Technology, Industrial Technology Research Institute of Intelligent Equipment, Jiangsu Provincial Engineering Laboratoryof Intelligent Manufacturing Equipment, Nanjing 211167, Peoples R China
  2. Jiangsu University of Science and Technology, School of Mechanical Engineering, Zhenjiang 212003, Peoples R China
  3. Northeastern University, State Key Laboratory of Rolling and Automation, 3-11 Wenhua Road, Shenyang, Peoples R China
Download PDF Download RIS Download Bibtex

Abstract

In order to reveal the non-uniform distribution of grain size in thick direction for engineering heavy plate, microstructure of 40 mm-thick Q345 steel was observed and measured under different short-term high temperature environments formed by fire. Moreover, the influence of the short-term high temperature environment was revealed on the distribution of ferrite grain size in the Q345 steel. Under different fire service environments, there was a log-normal distribution relationship between the distribution parameter Nf (number of ferrite grains) and df (average grain diameter), as well as ρAf (area fraction density) and df, at different positions along the thickness direction. However, the statistical results are greatly affected by the length of the statistical interval. When df is about 4 to 6 times the length of the statistical interval, the statistical accuracy is higher. By using nonlinear fitting method, multiple non-uniform distribution empirical models including Nf-df empirical formulas and ρAf-df empirical formulas were established at different positions along thick direction under various fire environments. Furthermore, the interrelationships between fire temperature T and Nf , T and ρAf , fire duration t and Nf , t and ρAf were revealed, respectively.
Go to article

Authors and Affiliations

Hao Xu
1
ORCID: ORCID
Rui-Bin Gou
1
ORCID: ORCID
Min Yu
2
ORCID: ORCID
Wen-Jiao Dan
1
ORCID: ORCID
Nian Wang
3
ORCID: ORCID

  1. Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
  2. Anhui Science and Technology University, College of Architecture, Bengbu 233000, China
  3. Bengbu Special Equipment Supervision and Inspection Center, Bengbu 233000, China

This page uses 'cookies'. Learn more