Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of cladding on tool steel (SKD61) by using 5%Cr-1.5%Mo-Fe powder (SKD61), which is expected to be economically effective when used to manufacture and mend die-casting parts. The cladding conditions were as follows: the distance between the coaxial powder supply head and the substrate surface was 20 mm, and Ar was used as the supply gas. The laser outputs applied in the cladding procedure were 3, 4, and 5 kW. The microstructure of the heat-affected zone in the processed specimens was analyzed, and the macrostructure and morphology of the substrate material were studied. Specimen hardness measurements were performed at intervals of 0.1 mm from the substrate surface to the core. As the laser output increased from 3 to 4 and 5 kW, the dilution rate increased from 10.6% to 11.8 and 13.2%. It was confirmed that the fraction of carbides increased as the laser output increased from 3 kW to 5 kW.
Go to article

Authors and Affiliations

Cheol-Woo Kim
1
ORCID: ORCID
Hyo-Sang Yoo
1
ORCID: ORCID
Sung-Kil Hong
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Suncheon, Korea
  2. Chonnam National University, School of Materials Science and Engineering, 61186, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, a novel composite was fabricated by adding the Hafnium diboride (HfB2) to conventional WC-Co cemented carbides to enhance the high-temperature properties while retaining the intrinsic high hardness. Using spark plasma sintering, high density (up to 99.4%) WC-6Co-(1, 2.5, 4, and 5.5 wt. %) HfB2 composites were consolidated at 1300℃ (100℃/min) under 60 MPa pressure. The microstructural evolution, oxidation layer, and phase constitution of WC-Co-HfB2 were investigated in the distribution of WC grain and solid solution phases by X-ray diffraction and FE-SEM. The WC-Co-HfB2 composite exhibited improved mechanical properties (approximately 2,180.7 kg/mm2) than those of conventional WC-Co cemented carbides. The high strength of the fabricated composites was caused by the fine-grade HfB2 precipitate and the solid solution, which enabled the tailoring of mechanical properties.
Go to article

Bibliography

[1] J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, J. Alloys Compd. 786, 1-10 (2019).
[2] J. Garcia, V.C. Cipres, A. Blomqvist, B. Kaplan, Int. J. Refract. Met. Hard Mater. 80, 40-68 (2019).
[3] S.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ceram. Int. 46 (16), 25106-25112 (2020).
[4] M .D. Brut, D. Tetard, C. Tixier, C. Faure, E. Chabas, 10th International Conference of the European Ceramic Society, Berlin, 1315-1320 (2007).
[5] A.K. Kumar, K. Kurokawa, Books: Tungsten carbide – Processing and applications, chapter 2: Spark plasma sintering of ultrafine WC powders: A combined kinetic and microstructural study (2012).
[6] R .G. Crookes, B. Marz, H. Wu, Mater. Des. 187, 108360 (2020).
[7] C. Bargeron, R. Benson, R. Newman, A.N. Jette, T.E. Phillips, Mater. Sci. (1993).
[8] C. Bagnall, J. Capo, W.J. Moorhead, Metallography Microstructure Analysis 7, 661-679 (2018).
Go to article

Authors and Affiliations

Hyun-Kuk Park
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Ju-Hun Kim
1 2
ORCID: ORCID
Sung-Kil Hong
2
ORCID: ORCID
Jeong-Han Lee
1 2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil, Buk-gu, Gwan g-Ju, 61012, Korea
  2. Chonnam National University, Materials Science & Engineering, 77, Yong-bongro, Buk-gu, Gwan g-ju, 61186, Korea

This page uses 'cookies'. Learn more