Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Abstract In tomato fruits, chlorophyll, lycopene and ß-carotene are mostly responsible for the color. During ripening of tomato fruits, the color of the pericarp changes from green to red as chlorophyll is degraded and carotenoids accumulate. These changes are associated with an increase in respiration and ethylene production. Carotenoid biosynthesis pathway in plants can be disturbed by herbicide fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl(phenyl)]- 4(1H)-pyridinone), which inhibits the activity of phytoene desaturase, an enzyme responsible for conversion of phytoene to phytofluene. Fluridone is also used as an inhibitor of biosynthesis of abscisic acid (ABA) and strigolactones, and it reduces chlorophyll production in plants. In our research we studied the effect of fluridone on some physiological parameters, such as color, firmness, ethylene production, lycopene and chlorophyll content during ripening of the tomato fruit. Tomato plants cv. Altadena (Syngenta) were cultivated in a greenhouse in controlled temperature and both immature and mature fruits were used for the experiments, performed between August and November 2016. Fluridone at concentrations of 0.1% and 1.0% in lanolin paste was applied as a 2-3 mm stripe from the top to the base of tomato fruits, and as a control a stripe of lanolin was applied in the same way on the opposite side of the fruits. Fluridone at a concentration of 1.0% greatly inhibited lycopene accumulation in the pericarp of tomato fruits from the treated side. The measurements of fruit firmness have shown no significant differences between firmness of the part of the tomato fruits treated with fluridone, and the non-treated ones. Tomato fruits treated with fluridone produced amounts of ethylene similar to those found in control tissues on the opposite side of the same fruit. Fluridone delayed chlorophyll degradation in tomato fruits. The metabolic significance of these findings is discussed with the role of carotenogenesis inhibition in tomato fruit ripening.
Go to article

Authors and Affiliations

Justyna Góraj-Koniarska
Marian Saniewski
Ryszard Kosson
Wiesław Wiczkowski
Marcin Horbowicz
Download PDF Download RIS Download Bibtex

Abstract

Abstract The objective of the study was to assess the influence of methyl jasmonate (MJ) vapors on accumulation of 2-phenylethylamine (PEA), phenylacetic acid (PAA) and 2-phenylethanol (PE) in leaves and roots of maize (Zea mays L. subsp. mays, saccharata group, cv. Złota Karłowa) seedlings. Furthermore, we analyzed the expression patterns of eight genes (ADH1, ADH2, AO2, CAO, PDC1, PDC2, PTA and LOX, encoding alcohol dehydrogenase 1 and 2, primary amine oxidase, aldehyde oxidase 2, phenylalanine decarboxylase 1 and 2, phenylalanine (histidine) transaminase and lipoxygenase, respectively) involved in biosynthesis and turnover of PEA in maize tissues. In addition, the effect of MJ application on fresh biomass and growth of the tested seedlings was recorded. One-day MJ exposure increased the fresh weight of aerial parts and roots of Z. mays seedlings, whereas the opposite tendency occurred after 4-day of MJ treatment. One-day application of MJ resulted in an increase in the length of roots and its fluctuations in the aerial parts of maize plants, but extended exposure declined the growth of both parts of the seedlings. Methyl jasmonate elicitation caused various changes in the contents of PEA, PAA and PE in the maize seedlings. MJ treatments led to high upregulation of most genes, with the exception of three genes (i.e., ADH1, ADH2 and AO2) whose expression was downregulated after a 4-day exposure.
Go to article

Authors and Affiliations

Hubert Sytykiewicz
Marcin Horbowicz
Wiesław Wiczkowski
Danuta Koczkodaj
Joanna Mitrus
Tomasz Sawicki
Julia Sławianowska
Magdalena Szwed

This page uses 'cookies'. Learn more