Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. The following paper focuses on the selection of moulding sands with hydrated sodium silicate technologies for moulds devoted to the ablation casting of aluminum alloys. It has been proposed to use different types of moulding sands with a water-soluble binder, which is hydrated sodium silicate. The authors showed that the best kind of moulding sands for moulds for Al alloy casting will be moulding sands hardened with physical factors – through dehydration. The use of microwave hardened moulding sands and moulding sands made in hot-box technology has been proposed. The tests were carried out on moulding sands with different types of modified binder and various inorganic additives. The paper compares viscosity of different binders used in the research and thermal degradation of moulding sands with tested binders. The paper analyzes the influence of hardening time periods on bending strength of moulding sands with hydrated sodium silicate prepared in hot-box technology. The analysis of literature data and own research have shown that molding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the ablation foundry of Al alloys.

Go to article

Authors and Affiliations

K. Major-Gabryś
M. Hosadyna-Kondracka
A. Grabarczyk
J. Kamińska
Download PDF Download RIS Download Bibtex

Abstract

Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.

Go to article

Authors and Affiliations

K. Major-Gabryś
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.

Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
K. Major-Gabryś
J. Kamińska
A. Grabarczyk
M. Angrecki
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Authors and Affiliations

S. Puzio
J. Kamińska
K. Major-Gabryś
M. Angrecki
M. Hosadyna-Kondracka
Download PDF Download RIS Download Bibtex

Abstract

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Go to article

Bibliography

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Go to article

Authors and Affiliations

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper examinations of high-temperature wetting tests of 3 systems of liquid alloy – cast iron in contact with ceramic materials: magnesia ceramics in combination with natural graphite were presented. After wettability testing, the microscopic observations of the morphology of the sample surface and the cross-section microstructure with the chemical composition in micro-areas were examined. One of the objective of this work was also to verify whether the graphite content would affect the wettability of the magnesia ceramics. The study of high-temperature wetting kinetics of the liquid alloy in contact with the ceramic material, by the "sessile drop" method with capillary purification (CP) procedure was conducted. Under the test conditions, at a temperature of 1450°C and time 15 minutes, all 3 experimental systems showed a non-wetting behaviour. The average contact angle for the system with cast iron drop on magnesia ceramics was 140°, on magnesia ceramics with 10 parts per weight of graphite was 137° and on magnesia ceramics with 30 parts per weight of graphite - 139°.
Microscopic observations revealed that in the case of the sample consisting of the cast iron drop on the substrate with magnesia ceramics, the formation of fine separations was not observed, unlike the systems with the substrate with magnesia ceramics and the addition of natural graphite. Numerous, fine droplets accumulate on the graphite flakes and consist mainly of Si as well as Fe and O. On the other hand, the rough MgO grains have a gray, matt surface, without fine separations. The conducted observations indicate the mechanical nature of the bonding - liquid metal penetrates into the pores of the rough ceramics of the substrate. However, in the case of systems of cast iron drop with magnesia ceramics and addition of graphite, probably the adhesive connection and the physical attraction of elements derived from cast iron drop with the flake graphite appeared as well.
Go to article

Bibliography

[1] Sobczak, N., Sobczak, J.J., Kolev, M., Drenchev, L., Turalska, P., Homa, M., Kudyba, A. & Bruzda, G. (2020). High-temperature interaction of molten gray cast iron with Al2O3-ZrO2-SiO2 ceramic. Journal of Materials Engineering and Performance. 29, 2499-2505. DOI: 10.1007/s11665-020-04695-z. [2] Malaki, M., Fadaei Tehrani, A., Niroumand, B. & Gupta, M. (2021). Wettability in metal matrix composites. Metals. 11(7), 1034. DOI: 10.3390/met11071034. [3] Sobczak, N., Singh, M. & Asthana, R. (2005). High-temperature wettability measurements in metal/ceramic systems – Some methodological issues. Current Opinion in Solid State & Materials Science. 9(4-5), 241-253. DOI: 10.1016/j.cossms.2006.07.007. [4] Szafran, M., Rokicki, G., Lipiec, W., Konopka, K. & Kurzydłowski K. (2002). Porous ceramics infilted with metals and polymers. Composites. 2(5), 313-317. (in Polish). [5] Madzivhandila T., Bhero, S. & Varachia F. (2019). The influence of titanium addition on wettability of high-chromium white cast iron-matrix composites. Journal of Composite Materials. 53(11), 1567-1576. DOI: 10.1177/0021998318804616. [6] Asthana R. & Sobczak N. (2000). Wettability, spreading, and interfacial phenomena in high-temperature coatings. Retrieved September 28, 2021, from https://www.researchgate.net/profile/Natalia-Sobczak/publication/234787198_Wettability_Spreading_and_Interfacial_Phenomena_in_HighTemperature_Coatings/links/02e7e51acdbb31120a000000.pdf. [7] Janas, A., Kolbus, A. & Olejnik, E. (2009). On the character of matrix-reinforcing particle phase boundaries in MeC and MeB (Me = W, Zr, Ti, Nb, Ta) in-situ composites. Archives of Metallurgy and Materials 54(2), 319-327. [8] Moreira, A. B., Sousa, R. O., Lacerda, P., Ribeiro, L. M. M., Pinto, A. M. & Vieira, M. F. (2020). Microstructural characterization of TiC–white cast-iron composites fabricated by in situ technique. Materials. 13(1), 209. DOI: 10.3390/ma13010209. [9] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering 495(1-2), 43-49. DOI: 10.1016/j.msea.2007.11.094. [10] ASTRA Reference book. IENI, Report, Oct. 2007 [11] Liggieri, L. & Passerone, A.(1989). An automatic technique for measuring the surface tension of liquid metals. High Temperature Technology. 7, 80-86. [12] Bacior, M., Sobczak, N., Homa, M., Turalska, P., Kudyba, A., Bruzda, G., Nowak, R. & Pytel, A. (2017). High-temperature interaction of molten vermicular graphite cast iron with Al2O3 substrate. The Transactions of the Foundry Research Institute. 4/2017, 375-384. DOI: 10.7356/iod.2017.41. [13] Shen, P., Zhang, L., Zhou, H., Ren, Y. & Wang, Y. (2017). Wettability between Fe-Al alloy and sintered MgO. Ceramics International. 43(10), 7674-7681. DOI: 10.1016/J.CERAMINT.2017.03.067
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
R. Nowak
1
P. Turalska
1
G. Bruzda
1
Ł. Boroń
1
M. Wawrylak
1

  1. Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and water-soluble binder. After pouring the mould with liquid metal the mould is destructed (washed out) using a stream of cooling medium, which in this case is water. The process takes place while the casting is still solidifying.

The following paper focuses on testing the influence of the modified ablation casting of aluminum alloy on casts properties produced in moulds with hydrated sodium silicate binder. The authors showed that the best kind of moulding sands for Al alloy casting will be those hardened with physical factors – through dehydration. The analysis of literature data and own research have shown that the moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the modified ablation casting of Al alloys. In the paper the use of microwave hardened moulding sands has been proposed.

The moulds were prepared in the matrix specially designed for this technology. Two castings from the AlSi7Mg alloy were made; one by traditional gravity casting and the other by gravity casting using ablation.

The conducted casts tests showed that the casting made in modified ablation casting technology characterizes by higher mechanical properties than the casting made in traditional casting technology. In both experimental castings the directional solidification was observed, however in casting made by ablation casting, dimensions of dendrites in the structure at appropriate levels were smaller.

Go to article

Authors and Affiliations

K. Major-Gabryś
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.

Go to article

Authors and Affiliations

J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
S. Puzio
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID

This page uses 'cookies'. Learn more