Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Vehicle-bridge collision accidents often result in significant economic losses and negative social effects, with heavy trucks being the most destructive to bridge structures. Therefore, this study uses a high-precision finite element method to investigate the impact resistance of concrete bridge piers when subjected to heavy truck impact. The main conclusions of this paper are as follows: (1) When heavy trucks collide with bridge piers, two peak impact forces are generated due to engine and cargo collisions. The peak collision force generated by engine impact is 17.7% greater than that generated by cargo impact. (2) The damage to the bridge, when impacted by heavy trucks, is mainly concentrated on the affected pier. The primary damage characteristics of the bridge piers include punching shear damage at the impact point, tensile damage at the backside, and shear damage at the pier top. (3) The peak values of shear force and bending moment both appear at the bottom of the pier, and the combination of the two causes serious flexural-shear failure damage at the bottom of the pier. (4) The axial force is fluted along the pier height, and the axial force at the top and bottom of the pier is the largest, while the axial force at the middle section is relatively small. The instantaneous axial force of bridge pier will reach more than 2 times the axial force during operational period, seriously threatening the safety of bridge. Overall, this study provides valuable insights into the impact resistance of concrete bridge piers when subjected to heavy truck impact, which can help engineers and policymakers in designing more robust and safer bridges.
Go to article

Authors and Affiliations

Yao. Huang
1
ORCID: ORCID

  1. Nanning College of Technology, Guangxi, 541006, China
Download PDF Download RIS Download Bibtex

Abstract

Concrete hollow thin-walled high piers (CHTWHPs) located in mountainous areas may be destroyed by the huge impact force of accidental rocks. The study focuses on analyzing the effects of rock impact on the pier, including its impact force, pier damage, dynamic response, and energy dissipation characteristics. The results show that: (1) Increasing the impact height led to a decrease in the peak impact force. Specifically, 15.5% decrease in the peak collision force is induced when the height of rock collision rises from 10 m to 40 m. (2) The damage mode of the pier’s collision surface is mainly oval damage with symmetrical center, radial damage on the side surface, and corner shear failure on the cross section. (3) The peak displacement of bridge pier increases with the increase of collision height. As the collision height increased from 10 m to 40 m, the bridge pier’s peak displacement also increased, rising by 104.2%. (4) The concrete internal energy gradually decreased with increasing collision height, dropping by 36.9% when the height of rock collision rises from 10 m to 40 m. The reinforcement internal energy showed an increase of 78%. The results of this study may provide reference for the rock collision resistance design of CHTWHPs.
Go to article

Authors and Affiliations

Yao. Huang
1
ORCID: ORCID

  1. Nanning College of Technology, Guangxi, 541006, China
Download PDF Download RIS Download Bibtex

Abstract

The contradiction between the restriction of grating manufacturing technology and high-resolution measurement requirements has been the focus of attention. The precision requirement of angle calculation during the digital subdivision processing of a Moiré signal is focused on, the causes of errors in the solution of arcsine function are analysed, and an improved coordinate rotation digital computer (CORDIC)with double-rotation iteration is proposed by discussing the principle of the conventional CORDIC in detail herein. Because the iterative number and data width of the improved CORDIC are limited by the finite digital circuit resources and thus determine the calculation accuracy directly, subsequently the overall quantization error (OQE) of the improved CORDIC is analysed. The approximate error and rounding error of the algorithm are deduced, and the error models of iterative number and data width are established. The validity and application value of the improved CORDIC are proved through simulations and experiments involving a subdividing circuit. The corresponding relation between the approximate error, rounding error and iteration number, as well as the bit width are proved by quantization. The error of subdivision with the improved CORDIC, obtained through a calibration experiment, is within ±0.5′′ and the mean variance is 0.2′′. The results of the research can be applied directly to a digital subdivision system to guide the parameter setting in the iterative process, which is of crucial importance in the quantitative analysis of error separation and error synthesis.

Go to article

Authors and Affiliations

Weibin Zhu
Shengjin Ye
Yao Huang
ORCID: ORCID
Zi Xue
Download PDF Download RIS Download Bibtex

Abstract

In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54.21″ to 1.63″, equivalent to 96.99% reduction in positioning error.
Go to article

Authors and Affiliations

Yi Zhou
1
Weibin Zhu
1
Yi Shu
1
Yao Huang
2 3
ORCID: ORCID
Wei Zou
3
Zi Xue
3

  1. China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
  2. Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, China
  3. National Institute of Metrology, Beijing, 100029, China
Download PDF Download RIS Download Bibtex

Abstract

In this work, thermo-mechanically treated 42CrMo steel was subjected to cryogenic treatment conducted by means of orthogonal design method, followed by low-temperature tempering to investigate the effect of different parameters of cryogenic treatment on wear resistance of 42CrMo steel and to optimize parameters of cryogenic treatment for improving wear resistance. The results of hardness test and wear test show that cryogenic treatment significantly improves wear resistance with marginal changes in coefficient of friction and hardness. Specifically, cryogenic temperature has the largest impact on wear resistance of 42CrMo steel, holding time has medium impact, and the parameter of treatment cycles has the least impact. The optimum parameters of cryogenic treatment are −196°C for 12 hours with one cycle for improving wear resistance. The results of scanning electron microscopy (SEM) and X-ray diffractometry (XRD) analysis indicate that marginal changes in hardness and coefficient of friction may be owing to little amount of transformation of retained austenite, and the significant influence of cryogenic treatment on improving wear resistance of 42CrMo steel can be mainly attributed to segregation of carbon atoms promoted by cryogenic treatment resulting in more precipitation of carbides in subsequent tempering.
Go to article

Authors and Affiliations

Haidong Zhang
1
ORCID: ORCID
Xianguo Yan
1
ORCID: ORCID
Zhi Chen
1
ORCID: ORCID
Minna Zhao
1
ORCID: ORCID
Liang Tang
1
ORCID: ORCID
Yuan Gao
1
ORCID: ORCID
Fan Li
1
ORCID: ORCID
Yao Huang
1
ORCID: ORCID
Junji Li
2
ORCID: ORCID

  1. Taiyuan University of Science and Technology, School of Mechanical Engineering , Taiyuan 030024, China
  2. Taiyuan University of Science and Technology, Jincheng School District, Jincheng 048011, China
Download PDF Download RIS Download Bibtex

Abstract

The machining residual stress produced in the cutting process of aluminum alloy parts can easily lead to a scrap of the processed parts. In order to reduce the residual stress of aluminum alloy in the milling process, based on the Taguchi-Grey relational approach, the effects of different milling parameters on the residual stress and surface roughness of 2A12 aluminum alloy were studied. To reduce the residual stress and surface roughness of 2A12 aluminum alloy, optimized milling parameters were obtained. To further reduce the milling residual stress of 2A12 aluminum alloy, the samples processed by the optimized milling parameters were treated by cryogenic treatment and artificial aging. The residual stress of the sample was measured by the blind hole drilling method, and the evolution mechanism of the microstructure to reduce the machining residual stress was revealed. The results show that the combination of deep cooling treatment and oil bath aging can effectively reduce the residual stress on the machined surface of the aluminum alloy and facilitate a more uniform distribution of the residual stress inside the specimen. The effect of the coarse second phase on the residual stress in the microstructure is not significant, and the fine and diffusely distributed precipitation phase is beneficial to the reduction of the residual stress in the aluminum alloy.
Go to article

Authors and Affiliations

Yao Huang
1
ORCID: ORCID
Xianguo Yan
1
ORCID: ORCID
Ruize Yuan
1
ORCID: ORCID
Zhi Chen
1
ORCID: ORCID
Liang Tang
1
ORCID: ORCID
Ao Shen
1
ORCID: ORCID
Xuemei Niu
1
ORCID: ORCID

  1. Taiyuan University of Science and Technology, School of Mechanical Engineering, China

This page uses 'cookies'. Learn more