Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Tensile tests of 8009Al alloy reinforced with SiC and Al₂O₃ particles fabricated by powder metallurgy (PM) were conducted at temperatures of 250–350°C and strain rates of 0.001–0.1 s⁻¹. The ultimate tensile strength and yield strength of the samples decreased while the temperature and strain rate increased. The elongation slightly decreased at first and then increased with growing temperature because of the medium-temperature brittleness of the alloy matrix. When the strain rate was 0.1 s⁻¹, the elongation of the 8009Al/Al₂O₃ composites always decreased with an increase in temperature because of the poorly coordinated deformation and weak bonding between the matrix and Al₂O₃ particles at such a high strain rate. The work-hardening rates of the composites sharply increased to maxima and then decreased rapidly as the strain increased. Meanwhile, the 8009Al/SiCₚ composites displayed superior UTS, YS, elongation, and work-hardening rates than those of the 8009Al/Al₂O₃ composites under the same conditions. Compared to 8009Al alloys reinforced with spherical Al₂O₃ particle, 8009Al alloys reinforced with irregular SiC particles exhibited a better strengthening effect. The fracture mechanism of the 8009Al/SiCₚ composites was mainly ductile, while that of the 8009Al/Al₂O₃ composites was primarily debonding at the matrix–particle interfaces in a brittle mode.
Go to article

Bibliography

  1.  P.-h. Lü, X.F. Wang, C.G. Dong, C.Q. Peng, and R.C. Wang, “Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites,” J. Cent. South Univ., vol. 27, no. 9, pp. 2567–2577, 2020, doi: 10.1007/s11771-020-4482-z.
  2.  C. Emmy Prema, S. Suresh, G. Ramanan, and M. Sivaraj, “Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission,” Mater. Res. Express, vol. 7, no. 1, pp. 016524, 2020, doi: 10.1088/2053- 1591/ab6257.
  3.  S.V. Nair, J.K. Tien, and R.C. Bates, “SiC-reinforced aluminium metal matrix composites International Metals Reviews,” Int. Met. Rev., vol. 30, no. 1, pp. 275–290, 1985, doi: 10.1179/imtr.1985.30.1.275.
  4.  Q. Yan, D. Fu, X. Deng, H. Zhang, and Z. Chen, “Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures,” Mater. Charact., vol.  58, no. 6, pp. 575–579, 2007, doi: 10.1016/j.matchar.2006.06.024.
  5.  Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, and G. Chen, “Ambient temperature mechanical properties of Al-8.5Fe-1.3V-1.7Si/ SiC_P composite,” Mater. Sci. Eng. A, vol. A460‒61, no.  Jul, pp. p.180–185, 2007, doi: 10.1016/j.msea.2007.02.105.
  6.  D. Shimansky and H.J. McQueen, “Hot Working Of Heat Resistant Rapidly Solidified AI-Fe-V-Si Alloy,” High Temp. Mat., vol. 18, no. 4, pp. 241–252, 1999, doi: 10.1515/HTMP.1999.18.4.241.
  7.  S. Hariprasad, S. Sastry, and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7%Si alloy,” Acta. Mater., vol. 44, no. 1, pp. 383–389, 1995, doi: 10.1016/1359-6454(95)00160-1.
  8.  Y.D. Xiao, W. Wang, and L.I. Wen-Xian, “High temperature deformation behavior and mechanism of spray deposited Al-Fe-V-Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 17, no. 006, pp. 1175–1180, 2007, doi: 10.1016/S1003-6326(07)60245-3.
  9.  S. Sun, L. Zheng, P. Hui, and Z. Hu, “Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting,” Mater. Sci. Eng. A, vol. 659, no. 6, pp.  207–214, 2016, doi: 10.1016/j.msea.2016.02.053.
  10.  Y. He, H. Tu, B. Qiao, L. Feng, J. Yang, and Y. Sun, “Tensile fracture behavior of spray-deposited SiCP/Al–Fe–V–Si composite sheet,” Adv. Compos. Mater., vol. 22, no. 4, pp. 227–237, 2011, doi: 10.1080/09243046.2013.796626.
  11.  L. Hao, Y.Q. He, N. Wang, Z.H. Chen, Z.G. Chen, H.G. Yan, and Z.K. Xu, “The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited SiCP/Al–11.7Fe–1.3V–1.7Si Composite,” Adv. Compos. Mater., vol. 18, no. 4, pp.  351–364, 2009, doi: 10.1163/156855109X434766.
  12.  S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, “Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps,” Vacuum, vol. 149, pp. 297–305, 2018, doi: 10.1016/j.vacuum.2018.01.001.
  13.  C. Shuang, T. Jie, H. Luo, W. Yu, and Z. Hui, “Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites,” Mater. Sci. Eng. A, vol. 697, pp. 194–202, 2017, doi: 10.1016/j.msea.2017.05.016.
  14.  M.H. Guo, J. Y. Liu, C.C. Jia, Q.J. Jia, and S.J. Guo, “Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming,” J. Cent. South Univ., vol. 21, no. 11, pp. 4053–4058, 2014, doi: 10.1007/s11771- 014-2396-3.
  15.  H.S. Chen, W.X. Wang, H.H. Nie, J. Zhou, Y.L. Li, R.F. Liu, Y.Y. Zhang, and P. Zhang, “Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy,” J Alloys Compd., vol.  730, pp. 342–351, 2018, doi: 10.1016/j.jallcom.2017.09.312.
  16.  H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu, “The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites,” J. Alloy. Compd., vol. 632, pp. 23–29, 2015, doi: 10.1016/j.jallcom.2015.01.048.
  17.  H. Sun, X. Li, P. Zhang, and W. Fang, “The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy,” Mater. Sci. Eng. A, vol. 611, pp. 257–262, 2014, doi: 10.1016/j.msea.2014.06.009.
  18.  W. Zhang, D. Chai, G. Ran, and J.E. Zhou, “Study on microstructure and tensile properties of in situ fiber reinforced aluminum matrix composites,” Mater. Sci. Eng. A, vol. 476, no. 1/2, pp.  157–161, 2008, doi: 10.1016/j.msea.2007.05.018.
  19.  S. Ghanaraja, K.L.V. Kumar, K.S. Ravikumar, and B.M. Madhusudan, “Mechanical Properties of Al2O3 Reinforced Cast and Hot Extruded Al based Metal Matrix Composites,” Mater. Today: Proc., vol. 4, no. 2, Part A, pp. 2771–2776, 2017, doi: 10.1016/j.matpr.2017.02.155.
  20.  M. Sharififar and S. Mousavi, “Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature,” Mater. Sci. Eng. A, vol. 594, no. 1, pp. 118–124, 2014, doi: 10.1016/j.msea.2013.11.051.
  21.  D. Hull and D. J. Bacon, Introduction to Dislocations,4th Ed., 2001, Oxford.
  22.  H. Luo, J. Teng, S. Chen, Y. Wang, and H. Zhang, “Flow stress and processing map of a PM 8009Al/SiC particle reinforced composite during hot compression,” J. Mater. Eng. Perform., vol. 26, no.  10, pp. 4789–4796, 2017, doi: 10.1007/s11665-017-2963-5.
  23.  E. Bouchaud, L. Kubin, and H. Octor, “Ductility and dynamic strain ageing in rapidly solidified aluminium alloys. Metall Trans 22A:1021‒1028,” Metall. Trans. A, vol. 22, no. 5, pp. 1021–1028, 1991, doi: 10.1007/BF02661095.
  24.  D.M. Li and A. Bakker, “Temperature and strain rate dependence of the portevin-le chatelier effect in a rapidly solidified Al alloy,” Metall. Mater. Trans., vol. 26, no. 11, pp. 2873–2879, 1995, doi: 10.1007/BF02669645.
  25.  L. Yuan, W. Shi, Z. Zheng, and D. Shan, “Effect of the aspect ratio of whisker on work-hardening rate of as forged 2024Al/Al18B4O33w composite,” Mater. Charact., vol. 104, pp. 73–80, 2015, doi: 10.1016/j.matchar.2015.04.006.
  26.  W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, “Microstructures, tensile properties and work-hardening behavior of SiCp/Mg-Zn-Ca composites,” J. Alloy. Compd., vol. 695, pp. 2215–2223, 2016, doi: 10.1016/j.jallcom.2016.11.070.
  27.  T.S. Srivatsan, M. Al-Hajri, C. Smith, and M. Petraroli, “The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite,” Mater. Sci. Eng. A, vol. 346, no. 1–2, pp.  91–100, 2003, doi: 10.1016/S0921-5093(02)00481-1.
  28.  M. Vedani, F. D’Errico, and E. Gariboldi, “Mechanical and fracture behaviour of aluminium-based discontinuously reinforced composites at hot working temperatures,” Compos. Sci. Technol, vol.  66, no. 2, pp. 343–349, 2006, doi: 10.1016/j.compscitech.2005.04.045.
  29.  J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, and B.L. Dong, “Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment,” J. Mater. Eng. Perform., vol. 26, no. 4, pp. 1808–1816, 2017, doi: 10.1007/s11665-017-2627- 5.
  30.  B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, “High temperature deformation behavior of Al 2124-SiCp composite,” J. Mater. Process. Tech., vol. 63, no. 1–3, pp. 395–398, 1997, doi: 10.1016/S0924-0136(96)02653-2.
  31.  P. Yu et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 206–213, 2007, doi: 10.1016/j.msea.2006.08.077.
  32.  Y.K. Xu, M. Han, X. Jian, and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength,” Acta Mater., vol. 53, no. 6, pp. 1857–1866, 2005, doi: 10.1016/j.actamat.2004.12.036.
  33.  J. Fan, K. Zhnag, and L. Shi, “Interface Characterization of the SiCp/Al Composites Made by Powder Metallurgy,” J. Mater. Sci. Technol., vol. 15, no. 2, pp. 147–150, 1999, https://www.jmst.org/EN/abstract/abstract5749.shtml.
  34.  J.-Ch., Lee, and, J.-Y. Byun, S.-B. Park, and H.-I. Lee, “Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite,” Acta Mater., vol. 46, pp.  1771–1780, 1998, doi: 10.1016/S1359-6454(97)00265-6.
  35.  J.K. Park and J.P. Lucas, “Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3,” Scripta Mater., vol. 37, no. 4, pp. 511–516, 1997, doi: 10.1016/S1359-6462(97)00133-4.
  36.  J. Long-tao et al., “Microstructure and tensile properties of TiB2p/6061Al composites,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 8, pp. 542–546, 2009, doi: 10.1016/S1003-6326(10)60105-7.
  37.  B. Ogel and R. Gurbuz, “Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders,” Mater. Sci. Eng. A, vol. 301, no. 2, pp.  213–220, 2001, doi: 10.1016/S0921-5093(00)01656-7.
  38.  Y. Qiao et al., “Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy,” J. Mater. Sci. Technol., vol. 60, pp. 168–176, 2021, doi: 10.1016/j.jmst.2020.06.010.
  39.  Y.X. Qiao et al., “Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel With Hydrogen Charging,” JOM, vol. 73, no. 4, pp. 1165–1172, 2021, doi: 10.1007/s11837-021-04569-2.
  40.  J. Wu, Y. Qiao, Y. Chen, L. Yang, X. Cao, and S. Jin, “Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water,” J. Mater. Eng. Perform., vol. 30, pp. 3577–3585, 2021, doi: 10.1007/ s11665-021-05688-2.
  41.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with a rare-earth element addition by mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
Go to article

Authors and Affiliations

Shuang Chen
1
Guoqiang Chen
1
Pingping Gao
1 2
Chunxuan Liu
2
Anru Wu
1
Lijun Dong
1
Zhonghua Huang
1
Chun Ouyang
1 3 4
Hui Zhang
5

  1. Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, Xiangtan 411104, China
  2. Hunan Gold Sky Aluminum Industry High-tech Co., Ltd., Changsha 410205, China
  3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 21200, China
  4. CETC Maritime Electronics Research Institute Co., Ltd., Ningbo Zhejiang 315000, China
  5. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

This page uses 'cookies'. Learn more