Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.
Go to article

Bibliography

[1] H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757-1765 (2020).
[2] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56-59 (2019).
[3] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[4] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[5] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22-28 (2018).
[6] W . Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 75, 704-710 (2004).
[7] M .J Jang, H. Kwak, Y.W Lee, Y.J. Jeong, J. Choi, Y.H. Jo, W.M. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, S. Lee, B.J. Lee, M.I. Abd El Aal, H.S. Kim, Met. Mater. Int. 25, 277-284 (2019).
[8] N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168-178 (2020).
[9] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[10] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, Annual Rev. Mater. Res. 45, 391-431 (2015).
[11] D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957-2965 (2009).
[12] D.K. Mondal, R.M. Dey, Mater. Sci. Eng. A 149, 173-181 (1992).
[13] M . Sarwar, R. Priestner, J. Mater. Sci. 31, 2091-2095 (1996).
[14] B. Hwang, T. Cao, S.Y. Shin, S. Lee, S.J. Kim, Mater. Sci. Tech. 21, 967-975 (2005).
[15] F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25, 1039-1046 (2019).
[16] J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161-1169 (2019).
[17] H. Duan, Y. Li, G. He, J. Zhang, Int. J. Mod. Phys. B 23, 1191- 1196 (2009).
[18] S. Krajewski, J. Nowacki, Arch. Civ. Mech. Eng. 14, 278-286 (2014).
[19] N.S. Reddy, C.H. Park, Y.H. Lee, C.S. Lee, Mater. Sci. Tech. 24, 294-301 (2008).
[20] N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276-282 (2008).
[21] N.S. Reddy, B.B. Panigrahi, M.H. Choi, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175-183 (2015).
[22] N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93-105 (2009).
[23] T. Dutta, S. Dey, S. Datta, D. Das, Comput. Mater. Sci. 157, 6-16 (2019).
[24] C. Lin, P.L. Nrayana, N.S. Reddy, S.W. Choi, J.T. Yeom, J.K Hong, C.H. Park, J. Mater. Sci. Tech. 35, 907-916 (2019).
[25] I .D. Jung, D.S. Shin, D. Kim, J. Lee, M.S. Lee, H.J. Son, N.S. Reddy, M. Kim, S.K. Moon, K.T. Kim, J. Yu, S. Kim, S.J. Park, H. Sung, Materialia 11, 100699 (2020).
[26] H.S. Lim, J.Y. Kim, B. Hwang, J. Korean. Soc. Heat Treat. 30, 106-112 (2017).
[27] S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370-379 (2012).
[28] Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55-64 (1995).
[29] P . Chang, A.G. Preban, Acta Metall. 33, 897-903 (1985).
[30] N.D. Beynon, S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Tech, 21, 771-778 (2005).
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study explores the hydrogen embrittlement behaviour of two Ni-based superalloys using electrochemical hydrogen charging. Two types of tensile specimens with different geometry for the Haynes 617 and Hastelloy X alloys were electrochemically hydrogen-charged, and then a slow strain rate test was conducted to investigate the hydrogen embrittlement behaviour. Unlike the ASTM standard specimens, two-step dog-bone specimens with a higher surface-area-to-volume ratio showed higher sensitivity to hydrogen embrittlement because hydrogen atoms are distributed mostly on the surface area. On the other hand, the Haynes 617 alloy had a lower hydrogen embrittlement resistance than that of the Hastelloy X alloy due to its relatively large grain size and the presence of precipitates at grain boundaries. The Haynes 617 alloy primarily showed an intergranular fracture mode with cracks from the slip band, whereas the Hastelloy X alloy exhibited a combination of transgranular and intergranular fracture behavior under hydrogen-charged conditions.
Go to article

Authors and Affiliations

Jae-Yun Kim
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The microstructure and mechanical properties of hot-rolled Fe-9Mn-0.2C medium-manganese steels with different Al, Cu, and Ni contents were investigated in this study. Based on the SEM, XRD, and EBSD analysis results, the microstructure was composed of martensite, band-type delta ferrite, and retained austenite phases depending on the Al, Cu, and Ni additions. The tensile and Charpy impact test results showed that the sole addition of Al reduced significantly impact toughness by the presence of delta-ferrite and the decrease of austenite stability although it increased yield strength. However, the combined addition of Al and Cu or Ni provided the best combination of high yield strength and good impact toughness because of solid solution strengthening and increased austenite stability.
Go to article

Bibliography

[1] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[2] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[3] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22- 28 (2018).
[4] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019). 1011
[5] H . Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C.D. Cooman, Met. Mater. Int. 25, 594-605 (2019).
[6] Y. Kwon, J.H. Hwang, H.C. Choi, T.T.T. Trang, B. Kim, A. Zargaran, N.J. Kim, Met. Mater. Int. 26, 75-82 (2020).
[7] M . Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182-192 (2015).
[8] H . Choi, S. Lee, J. Lee, F. Barlat, B.C.D. Cooman, Mater. Sci. Eng. A 687, 200-210 (2017).
[9] Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong, H.Y. Wu, Mater. Sci. Eng. A 595, 86-91 (2014).
[10] Z.C. Li, H. Ding, Z.H. Cai, Mater. Sci. Eng. A 639, 559-566 (2015).
[11] T.W. Hong, S.I. Lee, J.H. Shim, J. Lee, M.G. Lee, B. Hwang, Korean J. Mater. Res. 28, 570-577 (2018).
[12] M .T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han, Acta. Mater. 164, 122-134 (2019).
[13] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[14] S. H. Kim, H. Kim, N. J. Kim, Nature 518, 77-19 (2015).
[15] J.H. Hollomon, Trans. Metall. Soc. AIME, 162, 268-290 (1945).
[16] G E. Dieter, McGraw-Hill, Mechanical Metallurgy, London 1988.
[17] J. Chen, M. Lv, S. Tang, Z. Liu, G. Wang, Mater. Charact. 106, 108-111 (2015).
[18] Y.K. Lee, J. Han, Mater. Sci, Technol. 31, 843-856 (2015).
[19] J. Han, A.K. Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, Acta Mater. 122, 199-206 (2017).
Go to article

Authors and Affiliations

Young-Chul Yoon
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Sang-Hyeok Lee
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232, Gongneung-Ro., Nowon-gu, Seoul 01811, Korea
Download PDF Download RIS Download Bibtex

Abstract

The present research deals with the effect of pre-strain on the hydrogen embrittlement behavior of intercritically annealed medium-Mn steels. A slow strain-rate tensile test was conducted after hydrogen charging by an electrochemical permeation method. Based on EBSD and XRD analysis results, the microstructure was composed of martensite and retained austenite of which fraction increased with an increase in the intercritical annealing temperature. The tensile test results showed that the steel with a higher fraction of retained austenite had relatively high hydrogen embrittlement resistance because the retained austenite acts as an irreversible hydrogen trap site. As the amount of pre-strain was increased, the hydrogen embrittlement resistance decreased notably due to an increase in the dislocation density and strain-induced martensite transformation.
Go to article

Authors and Affiliations

Sang-Gyu Kim
1
ORCID: ORCID
Young-Chul Yoon
1
ORCID: ORCID
Seok-Woo Ko
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the coiling temperature on the tensile properties of API X70 linepipe steel plates is investigated in terms of the microstructure and related anisotropy. Two coiling temperatures are selected to control the microstructure and tensile properties. The API X70 linepipe steels consist mostly of ferritic microstructures such as polygonal ferrite, acicular ferrite, granular bainite, and pearlite irrespective of the coiling temperature. In order to evaluate the anisotropy in the tensile properties, tensile tests in various directions, in this case 0° (rolling direction), 30°, 45° (diagonal direction), 60°, and 90° (transverse direction) are conducted. As the higher coiling temperature, the larger amount of pearlite is formed, resulting in higher strength and better deformability. The steel has higher ductility and lower strength in the rolling direction than in the transverse direction due to the development of γ-fiber, particularly the {111}<112> texture.
Go to article

Authors and Affiliations

Dong-Kyu Oh
1
ORCID: ORCID
Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Min Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  2. Hyundai Steel Company, Dangjin-Si, Chungnam, 31719, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study describes how microstructural constituents affected the hydrogen embrittlement resistance of high-strength pipeline steels. The American Petroleum Institute (API) X60, X70, and X80 pipeline steels demonstrated complicated microstructure comprising polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, e.g., the martensite-austenite (MA) constituent, and the volume fraction of the microstructures was dependent on alloying elements and processing conditions. To evaluate the hydrogen embrittlement resistance, a slow strain rate test (SSRT) was performed after electrochemical hydrogen charging. The SSRT results indicated that the X80 steel with the highest volume fraction of the MA constituent demonstrated relatively high yield strength but exhibited the lowest hydrogen embrittlement resistance because the MA constituent acted as a reversible hydrogen trap site.
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Dong-Kyu Oh
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In-situ study on the high-temperature fracture behaviour of 347 stainless steel was carried out by using a confocal laser scanning microscope (CLSM). The welding microstructures of the 347 stainless steel were simulated by subjecting the steel specimen to solution and aging treatments. Undissolved NbC carbides were present within grains after solution treatment, and M23C6 carbides were preferentially formed at grain boundaries after subsequent aging treatment. The M23C6 carbides formed at grain boundaries worked as stress concentration sites and thus generated larger cracks during high-temperature tensile testing. In addition, grain boundary embrittlement was found to be a dominant mechanism for the high-temperature fracture of the 347 stainless steel because vacancy diffusion in the Cr-depleted zones enhances intergranular fracture due to the precipitation of M23C6 carbides at grain boundaries.
Go to article

Bibliography

[1] N . Kim, W. Gil, H. Lim, C. Choi, H. Lee, Met. Mater. Int. 25, 193-206 (2019).
[2] B. Jian, X. Hu, Y. Liu, Mat. Mater. Int. 26, 1295-1305 (2020).
[3] H.P. Kim, D.J. Kim, Corros. Sci. Tech. 17, 183-192 (2018).
[4] Y . Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, J. Mater. Res. 30, 3642-3652 (2015).
[5] B. Sasmal, J. Mater. Sci. 32, 5439-5444 (1997).
[6] K . Kaneko, T. Fukunage, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, P. A. Midgley, Scr. Mater. 65, 509-512 (2011).
[7] J. Vivas, C. Capdevila, E. Altstadt, M. Houska, I. Sabirov, D.S. Mart, Met. Mater. Int. 25, 343-352 (2019).
[8] H.U. Hong, B.S. Rho, S.W. Nam, J. Mater. Sci. Eng. A. 318, 285- 292 (2001).
[9] S.G. Kim, J.N. Kim, J.P. Wang, C.Y. Kang, Met. Mater. Int. 25, 127-134 (2019).
[10] J.P. Adamson, J.W. Martin, Acta Mater. 19, 1015-1018 (1971)
[11] S.H. Lee, H.S. Na, K.W. Lee, Y. Choe, C.Y. Kang, Metals. 8, 1-14 (2018).
[12] Y .M. He, Y.H. Wang, K. Guo, T.S. Wang, J. Mater. Sci. Eng. A. 708, 248-253 (2017).
[13] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A. 742, 334-343 (2019).
[14] R . Raj, M.F. Ashby, Metall. Mater. Trans. 2, 1113-1127 (1971).
[15] T.G. Langdon, Acta Metal. Mater. 42, 2437-2443 (1994).
[16] Q. Wu, T. Han, Y. Wang, H. Wang, H. Zhang, S. Gu, Eng. Fail. Anal. 109, 104236 (2020).
[17] E . Merson, V. Danilov, D. Merson, A. Vinogradov, Eng. Fract. Mech. 183, 147-158 (2017).
[18] J. Tian, G. Xu, X. Wan, Mat. Mater. Int. 26, 961-972 (2020).
[19] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[20] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22-28 (2018).
[21] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019).
Go to article

Authors and Affiliations

Seok-Woo Ko
1
ORCID: ORCID
Hyeonwoo Park
2
ORCID: ORCID
Il Yoo
3
ORCID: ORCID
Hansoo Kim
2
ORCID: ORCID
Joonho Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
  2. Korea University, Department of Materials Science and Engineering, Seoul 02841, Republic of Korea
  3. ADNOC LNG, Abu Dhabi, United Arab Emirates
Download PDF Download RIS Download Bibtex

Abstract

In-situ observation of the transformation behavior of acicular ferrite in high-strength low-alloy steel using confocal laser scanning microscopy was discussed in terms of nucleation and growth. It is found that acicular ferrite nucleated at dislocations and slip bands in deformed austenite grains introduced by hot deformation in the non-recrystallization austenite region, and then proceeded to grow into an austenite grain boundary. According to an ex-situ EBSD analysis, acicular ferrite had an irregular shape morphology, finer grains with sub-grain boundaries, and higher strain values than those of polygonal ferrite. The fraction of acicular ferrite was affected by the deformation condition and increased with increasing the amount of hot deformation in the non-recrystallization austenite region.
Go to article

Authors and Affiliations

Sang-In Lee
1
ORCID: ORCID
Seung-Hyeok Shin
1
ORCID: ORCID
Hyeonwoo Park
2
ORCID: ORCID
Hansoo Kim
2
ORCID: ORCID
Joonho Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  2. Korea University, Department of Materials Science and Engineering, Seoul, 02841, Republic of Korea

This page uses 'cookies'. Learn more