Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, molten salt electrorefining was used to recover indium metal from In-Sn crude metal sourced from indium tin oxide (ITO) scrap. The electrolyte used was a mixture of eutectic LiF-KF salt and InF3 initiator, melted and operated at 700°C. Voltammetric analysis was performed to optimize InF3 content in the electrolyte, and cyclic voltammetry (CV) was used to determine the redox potentials of In metal and the electrolyte. The optimum initiator concentration was 7 wt% of InF3, at which the diffusion coefficients were saturated. The reduction potential was controlled by applying constant current densities of 5, 10, and 15 mA/cm2 using chronopotentiometry (CP) techniques. In metal from the In-Sn crude melt was deposited on the cathode surface and was collected in an alumina crucible.

Go to article

Authors and Affiliations

Hyun-Gyu Lee
Sang-Hoon Choi
Jae-Jin Sim
Jae-Hong Lim
Soong-Keun Hyun
Jong-Hyeon Lee
Kyoung-Tae Park
Download PDF Download RIS Download Bibtex

Abstract

The flow behavior of 7175 aluminum alloy was modeled with Arrhenius-type constitutive equations using flow stress curves during a hot compression test. Compression tests were conducted at three different temperatures (250°C, 350°C, and 450°C) and four different strain rates (0.005, 0.05, 0.5, and 5 s−1). A good consistency between measured and set values in the experimental parameters was shown at strain rates of 0.005, 0.05, and 0.5 s−1, while the measured data at 5 s−1 showed the temperature rise of the specimen, which was attributable to deformation heat generated by the high strain rate, and a fluctuation in the measured strain rates. To minimize errors in the fundamental data and to overcome the limitations of compression tests at high strain rates, constitutive equations were derived using flow curves at 0.005, 0.05, and 0.5 s−1 only. The results indicated that the flow stresses predicted according to the derived constitutive equations were in good agreement with the experimental results not only at strain rates of 0.005, 0.05, and 0.5 s−1 but also at 5 s−1. The prediction of the flow behavior at 5 s−1 was correctly carried out by inputting the constant strain rate and temperature into the constitutive equation.

Go to article

Authors and Affiliations

Young-Chul Shin
ORCID: ORCID
Dae-Kwan Joung
Seong-Ho Ha
ORCID: ORCID
Ho-Joon Choi
Soong-Keun Hyun
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the recovery behavior of valuable metals (Co, Ni, Cu and Mn) in spent lithium ion-batteries based on Al2O3-SiO2-CaO-Fe2O3 slag system via DC submerged arc smelting process. The valuable metals were recovered by 93.9% at the 1250℃ for 30 min on the 20Al2O3-40SiO2-20CaO-20Fe2O3 (mass%) slag system. From the analysis of the slag by Fourier-transform infrared spectroscopy, it was considered that Fe2O3 and Al2O3 acted as basic oxides to depolymerize SiO4 and AlO4 under the addition of critical 20 mass% Fe2O3 in 20Al2O3-40SiO2-CaO-Fe2O3 (CaO + Fe2O3 = 40 mass%). In addition, it was observed that the addition of Fe2O3 ranging between 20 and 30 mass% lowers the melting point of the slag system.
Go to article

Bibliography

[1] S. Al-Thyabat, T. Nakamura, E. Shibata, A. Iizuka, Minerals Engineering 45, 4-17 (2013).
[2] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, Journal of Power Sources 226, 272-288 (2013).
[3] X. Wang, G. Gaustad, C.-W. Babbitt, C. Bailey, Journal of Environmental Management 135, 126-134 (2014).
[4] A. Boyden, V.-K. Soo, M. Doolan, Procedia CIRP 48, 188-193 (2016).
[5] X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, Engineering 4, 361-370 (2018).
[6] T.-G. Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Journal of Power Sources 207, 173-182 (2012).
[7] G . Wu, S. Seebold, E. Yazhenskikh, K. Hack, M. Müller, Fuel Processing Technology 171, 339-349 (2018).
[8] M.-L. Pearce, J.-F. Beisler, Journal of The American Ceramic Society 49, 547-551 (1966).
[9] N. Saito, N. Hori, K. Nakashima, K. Mori, Metallurgical and Materials Transactions B 34B, 509-516 (2003).
[10] M. Nakamoto, Y. Miyanayashi, L, Holappa, T. Tanaka, ISIJ International 47, 1409-1415 (2007).
[11] H . Park, J.-Y. Park, G.-H. Kim, I. Sohn, Steel Research Int. 83, 150-156 (2012).
[12] H . Kim, W.-H. Kim, I. Sohn, D.-J. Min, Steel Research Int. 81, 261-264 (2010).
[13] J.-H. Park, D.-J. Min, H.-S. Song, Metallurgical and Materials Transactions B 35B, 269-275 (2004).
[14] G .-H. Cartledge, The Journal of the American Chemical Society 50, 2855-2863(1928).
[15] D. Wang, L. Jin, Y. Li, B. Wei, D. Yao, T. Wang, H. Hu, Fuel Processing Technology 191, 20-28 (2019).
[16] J. Pesl, R.-H. Eric, Minerals Engineering 15, 971-984 (2002).
[17] S. Wu, J. Xu, S. Yang, Q. Zhou, L. Zhang, ISIJ international 50, 1032-1039 (2010).
[18] X.-J. Zhai, N.-J. Li, X. Zhang, F.-U. Yan, L. Jiang, Trans. Nonferrous Met. Soc. China 21, 2117-2121 (2011).
[19] G . Ren, S. Xiao, M. Xie, PAN. Bing, C. Jian, F. Wang, X. Xia, Trans. Nonferrous Met. Soc. China 27, 450-456 (2017).
[20] V . Rayapudi, S. Agrawal, N. Dhawan, Minerals Engineering 138, 204-214 (2019).
[21] K. Prabriputaloong, M.-R. Piggott, Journal of the American Ceramic Society 56, 177-180 (1973).
[22] C. Hamann, D. Stoffler, W.-U. Reimold, Geochimica et Cosmochimica Acta 192, 295-317 (2016).
Go to article

Authors and Affiliations

Tae Boong Moon
1 2
ORCID: ORCID
Chulwoong Han
2
ORCID: ORCID
Soong Keun Hyun
1
ORCID: ORCID
Sung Cheol Park
2
ORCID: ORCID
Seong Ho Son
2
ORCID: ORCID
Man Seung Lee
3
ORCID: ORCID
Yong Hwan Kim
2
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing and Materials Technology Incheon, 156, Gaetbeol Rd., Yeonsu-gu, Incheon, 406-840, Korea
  3. Mokpo National University, Department of Materials Science and Engineering Mokpo, Korea

This page uses 'cookies'. Learn more