Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to assess the clinical efficacy of pentoxifylline (PTX) and L-glutamine (L-Gln) treatment on ischemia and reperfusion (I/R) injury in the abomasal tissue, acute phase response (APR), oxidative stress (OS), cytokine response, hemostatic, and coagulation disorders in the 96-h period before and after surgery in displaced abomasum (DA) cases. The study sample consisted of 48 dairy cows with DA that were categorized into four groups as group S (Sham group) (9 Left displaced abomasum (LDA)+3 Right displaced abomasum (RDA), group P (PTX) (10 LDA+2 RDA), group G (L-Gln) (10 LDA+2 RDA), and group P+G (PTX+L-Gln) (10 LDA+2 RDA). Acute-phase protein (Haptoglobin), oxidative stress indicators (malondialdehyde, nitric oxide, and glutathione), cytokines (tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β), coagulation factors (D-Dimer, Antithrombin (ATIII), Thrombin-antithrombin complex, Plasminogen activator inhibitor-1), and enzyme activities (lactate dehydrogenase, gamma- -glutamyl transferase, sorbitol dehydrogenase, glutamate dehydrogenase, adenosine deaminase, myeloperoxidase, and creatine phosphokinase) in blood serum samples and coagulometric analyses of blood plasma were performed in samples taken before the operation and at 30 and 60 min and 2, 5, 10, 24, 48, 72, and 96 h after the operation. In DA cases, while post-operative treatment procedures with PTX and L-Gln were effective in decreasing APR and OS, these were ineffective in prohibiting the inflammatory response coordinated by cytokines. For the treatment and prevention of I/R injury in the DA cases, PTX and L-Gln procedures hold promise with their effects on APR, OS, and hemostatic dysfunction. Additional treatment procedures are required for the suppression of inflammatory response, and the effectiveness of preconditioning treatment may be evaluated.
Go to article

Bibliography


Abilés J, Moreno-Torres R, Moratalla G, Castaño J, Pérez Abúd R, Mudarra A, Machado Ma J, Planells E, Pérez de la Cruz A (2008) Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition. Nutr Hosp 23: 332-339.

Acosta S, Bjorck M (2003) Acute thrombo-embolic occlusion of the superior mesenteric artery: a prospective study in a well-defined population. Eur J Vasc Endovasc 26: 179-183.

Altinyollar H, Boyabatli M, Berberoglu U (2006) D-dimer as a marker for early diagnosis of acute mesenteric ischemia. Thromb Res 117: 463-467.

An ZM, Dong XG, Guo Y, Zhou JL, Qin T (2015) Effects and clinical significance of pentoxifylline on the oxidative stress of rats with dia-betic nephropathy. Huazhong Univ Sci Technolog Med Sci 35: 356-361.

Bian GX, Li GG, Yang Y, Liu RT, Ren JP, Wen LQ, Guo SM, QJ Lu (2008) Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol Pharm Bull 31: 458-463.

Bick RL (1994) Disseminated intravascular coagulation: objective criteria for diagnosis and management. Med Clin N Am 78: 511-543.

Cano CP, Bermudez VP, Atencio HE, Medina MT, Anilsa A, Souki A, Molina OM, Restrepo H, Vargas ME, Núñez M, Ambard M, Toledo A, Contreras F, Velasco M (2003) Increased serum malondialdehyde and decreased nitric oxide within 24 hours of thrombotic stroke onset. Am J Ther 10: 473-476.

Cevrioglu AS, Yilmaz S, Koken T, Tokyol C, Yilmazer M, Fenkci IV (2004) Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats. Hum Reprod 19: 2144-2151.

Cöl R, Durgun Z (2011) Effect of recombinant interleukin-10 on some haematological and biochemical parameters in a rat endotoxaemic mod-el. Acta Vet Hung 59: 237-245.

Collatos C, Barton MH, Schleef R, Prasse KW, Moore JN (1994) Regulation of equine fibrinolysis in blood and peritoneal fluid based on a study of colic cases and induced endotoxaemia. Equine Vet J 26: 474-481.

Constable PD, Miller GY, Hoffsis GF, Hull BL, Rings DM (1992a) Risk factors for abomasal volvulus and left abomasal displacement in cattle. Am J Vet Res 53: 1184-1192.

Constable PD, St-Jean G, Koenig GR, Hull BL, Rings DM (1992b) Abomasal luminal pressure in cattle with abomasal volvulus or left dis-placed abomasum. J Am Vet Med Assoc 201: 1564-1568.

Corum O, Corum DD, Atik O, Er A, Uney K (2019) Pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite after intravenous administration of increasing doses to sheep. Am J Vet Res 80: 702-708.

Coster J, McCauley R, Hall J (2004) Glutamine: metabolism and application in nutrition support. Asia Pacific J Clin Nutr 13: 25-31.

Delgado MA, Monreal L, Armengou L, Ríos J, Segura D (2009) Peritoneal D-dimer concentration for assessing peritoneal fibrinolytic activity in horses with colic. J Vet Intern Med 23: 882-889.

Di Loria A, Piantedosi D, Cortese L, Roperto S, Urraro C, Paciello O. Guccione J, Britti D, Ciaramella P (2012) Clotting profile in cattle showing chronic enzootic haematuria (CEH) and bladder neoplasms. Res Vet Sci 93: 331-335.

Doll K (2015) Abomasal displacement in dairy cattle: a hereditary disease?. Vet J 205: 329-330.

Doll K, Sickinger M, Seeger T (2009) New aspects in the pathogenesis of abomasal displacement. Vet J 181: 90-96.

El-Ghoneimi A, Cursio R, Schmid-Alliana A, Tovey M, Lasfar A, Michiels JF, Rossi B, Gugenheim J (2007) Inhibition of tumor necrosis factor alpha gene transcription by pentoxifylline reduces normothermic liver ischemia-reperfusion injury in rats. Transplant Proc 39: 1761-1764.

Estrin MA, Wehausen CE, Jessen CR, Lee JA (2006) Disseminated intravascular coagulation in cats. J Vet Intern Med 20: 1289-1290.

Fürll M, Dabbagh MN, Fürll B, Sattler T (2004) The behaviour of superoxide dismutase (SOD) in serum of cows with abomasal displace-ment (DA). Dtsch Tierarztl Wochenschr 111: 7-13.

Gando S, Hayakawa M (2016) Pathophysiology of trauma-induced coagulopathy and management of critical bleeding requiring massive transfusion. Semin Thromb Hemost 42: 155-165.

Geishauser T (1995) Abomasal displacement in the bovine a review on character, occurrence, aetiology and pathogenesis. Zentralbl Veteri-naermed A 42: 229-251.

Grosche A, Fürll M, Wittek T (2012) Peritoneal fluid analysis in dairy cows with left displaced abomasum and abomasal volvulus. Vet Rec 170: 413.

Guiqi G (2011) Pre-treatment with glutamine attenuates lung injury in rats subjected to intestinal ischaemia-reperfusion. Injury 42: 72-77.

Hammerman C, Goldschmidt D, Caplan MS, Kaplan M, Schimmel MS, Eidelman AI, Branski D, Hochman A (1999) Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastr Nutr 29: 69-74.

Hirvonen J, Pyörala S. (1998) Acute-phase response in dairy cows with surgically-treated abdominal disorders. Vet J 155: 53-61.

Ikeda S, Zarzaur BL, Johnson CD, Fukatsu K, Kudsk KA (2002) Total parenteral nutrition supplementation with glutamine improves survival after gut ischemia/reperfusion. Jpen-Parenter Enter 26: 169-173.

Irmak K, Turgut K (2005) Disseminated intravascular coagulation in cattle with abomasal displacement. Vet Res Commun 29: 61-68.

Jaillardon L, Barthélemy A, Goy-Thollot I, Pouzot-Nevoret C, Fournel-Fleury C (2012) Mammary gland carcinoma in a dog with peripheral blood and bone marrow involvement associated with disseminated intravascular coagulation. Vet Clin Pathol 41: 261-265.

Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J (2007) Hepatic and renal concentrations of vitamins E and C in lead and ethanol-exposed rats. an assessment of their involvement in the mechanisms of peroxidative damage. Food Chem Toxicol 45: 1478-1486.

Karakurum MÇ, Albay MK, Şahinduran Ş, Sezer K (2009) Coagulation parameters in cattle with left displacement of abomasum. Kafkas Univ Vet Fak Derg 15: 293-296.

Karatepe O, Gulcicek OB, Ugurlucan M, Adas G, Battal M, Kemik A, Kamali G, Altug T, Karahan S (2009) Curcumin nutrition for the prevention of mesenteric ischemia-reperfusion injury: an experimental rodent model. Transplant Proc 41: 3611-3616.

Kayano M, Kida K (2015) Identifying alterations in metabolic profiles of dairy cows over the past two decades in Japan using principal component analysis. J Dairy Sci 98: 8764-8774.

Kloek J, Levi M, Heger M (2010) Cholestasis enhances liver ischemia/reperfusion-induced coagulation activation in rats. Hepatol Res 40: 204-215.

Levi M, van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38: 26-34.

Maden M, Ozturk AS, Bulbul A, Avci GE, Yazar E (2012) Acute-phase proteins, oxidative stress, and enzyme activities of blood serum and peritoneal fluid in cattle with abomasal displacement. J Vet Intern Med 26: 1470-1475.

Maden M, Yildiz R, Çöl R, Arican M, Ider M, Garip M, Tras B (2018) The evaluation of hemostatic dysfunctionand disseminated intravas-cular coagulationin dairy cows with abomasal displacement. Pol J Vet Sci 21: 769-778.

Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49: 1359-1377.

Moreira CN, Souza SN, Barini AC, Araújo EG, Fioravanti MCS (2012) Serum γ-glutamyltransferase activity as an indicator of chronic liver injury in cattle with no clinical signs. Arq Bras Med Vet Zootec 64: 1403-1410.

Ogurtan Z, Izci C, Ceylan C, Ok M (2003) Activated partial thromboplastin time and prothrombin time in cows with left displacent of aboma-sum. Indian Vet J 80: 429-431.

Ok M, Şen İ, Güzelbekteş H, Boydak M, Er C, Aydogdu U, Yildiz R (2013) The importance of concentrations of sorbitol dehydrogenase and glutamate dehydrogenase and B-Mode ultrasonographic examination in the diagnosis of hepatic lipidosis in dairy cows. Kafkas Univ Vet Fak Derg 19: 117-123.

Pyörala S, Kokkonen T, Pyörala E (1993) Bovine intestinal surgery in field conditions. Part III. Patients submitted to the Ambulatory Clinic of the College of Veterinary Medicine (1981-1992) a retrospective study. Finnish Veterinary Journal 99: 374-380.

Radwińska J (2010) Effect of the BVD-MD virus on coagulation and fibrinolytic systems in dairy cows. Bull Vet Isnt Pulawy 54: 293-298.

Reeves MJ, Vansteenhouse J, Stashak TS, Yovich JV, Cockerell G (1990) Failure to demonstrate reperfusion injury following ischaemia of the equine large colon using dimethyl sulphoxide. Equine Vet J 22: 126-132.

Roland L, Drillich M, Iwersen M (2014) Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Invest 26: 592-598.

Sener G, Akgun U, Satıroğlu H, Topaloğlu U, Keyer-Uysal M (2001) The effect of pentoxifylline on intestinal ischemia/reperfusion injury. Fund Clin Pharmacol 15: 19-22.

Sexton MF, Buckley W, Ryan E (2007) A study of 54 cases of left displacement of the abomasum. Ir Vet J 60: 605-609.

Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291-295.

Sobiech P, Radwińska J, Krystkiewicz W, Snarska A, Stopyra A (2008) Changes in the coagulation profile of cattle with left abomasal displacement. Pol J Vet Sci 11: 301-306.

Sobiech P, Rekawek W, Ali M, Targoński R, Zarczyńska K, Snarska A, Stopyra A (2013) Changes in blood acid-base balance parameters and coagulation profile during diarrhea in calves. Pol J Vet Sci 16: 543-549.

Sørensen JV (1996) Haemostatic activation after surgery and trauma, relationship to clinicopathological findings. Thesis, 1996. Aarhus Uni-versitet, Denmark.

Souza DG, Ferreira FL, Fagundes CT, Amaral FA, Vieira AT, Lisboa RA, Andrade MVM, Trifilieff A, Teixeira MM (2007) Effects of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in a model of intestinal reperfusion injury in mice. Eur J Pharmacol 571: 72-80.

Stojević Z, Piršljin J, Milinković-Tur S, Zdelar-Tuk M, Beer Ljubić B (2005) Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Veterinarski Arhiv 75: 67-73.

Stokol T (2012) Laboratory diagnosis of disseminated intravascular coagulation in dogs and cats: the past, the present, and the future. Vet Clin North Am Small Anim Pract 42: 189-202.

Tazuke Y, Wasa M, Shimizu Y, Wang HS, Okada A (2003) Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. Jpen J Parenter Enteral Nutr 27: 110-115.

Uney K, Tras B, Corum O, Yildiz R, Maden M (2019) Pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite following intra-venous administration in cattle. Trop Anim Health Prod 51: 435-441.

Van Winden SC, Kuiper R (2003) Left displacement of the abomasum in dairy cattle: recent developments in epidemiological and etiological aspects. Vet Res 34: 47-56.

Wasa M, Soh H, Shimizu Y, Fukuzawa M (2005) Glutamine stimulates amino acid transport during ischemia- reperfusion in human intestinal epithelial cells. J Surg Res 23: 75-81.

Wittek T, Grosche A, Locher LF, Fürll M (2010) Diagnostic accuracy of D-dimer and other peritoneal fluid analysis measurements in dairy cows with peritonitis. J Vet Intern Med 24: 1211-1217.

Zadnik TA (2003) Comparative study of the hemato-biochemical parameters between clinically healthy cows and cows with displacement of the abomasum. Acta Vet Beograd 53: 297-309.

Zhang F, Tong L, Qiao H, Dong X, Qiao G, Jiang H, Sun X (2008) Taurine attenuates multiple organ injury induced by intestinal ischemia reperfusion in rats. J Surg Res 149: 101-109.
Go to article

Authors and Affiliations

M. Maden
1
R. Yildiz
2
R. Çöl
3
M. Arican
4
M. Ider
1
K. Parlak
4
B. Tras
5

  1. Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey
  3. Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  4. Department of Surgery, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  5. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the cardiotoxic effect of the combination of tilmicosin and diclofenac sodium in sheep. Thirty-two sheep were used and were randomly divided into four equal groups as tilmicosin (T), diclofenac sodium (D), tilmicosin+diclofenac sodium (TD) and control (C) group. Group T received a single dose of tilmicosin, Group D was administered diclofenac sodium once a day for 3 days, and group TD was administered diclofenac and tilmicosin at the same doses as group T and D. Group C received NaCl in a similar way. The blood samples were taken before dosing and at 4th, 8th, 24th and 72nd hour post-dosing for measurement of cardiac markers such as H-FABP, cTn-I, CK-MB. H-FABP level of group TD was found to be significantly (p<0.05) higher than of group C at the 8th, 24th and 72nd hour and group D and T at the 72nd hour. cTn-I and CK-MB levels of group TD were found significantly (p<0.05) higher compared with other groups. In conclusion, the combined use of tilmicosin and diclofenac in sheep causes an increase in cardiac biomarkers and it can be stated that this combination of drugs may cause cardiac damage.
Go to article

Authors and Affiliations

R. Yildiz
1
D. Durna Corum
2
O. Corum
2
M. Ider
3
O. Atik
4
M. Ok
3
K. Uney
5

  1. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030, Burdur, Turkey
  2. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, 31060, Hatay, Turkey
  3. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, 42100, Konya, Turkey
  4. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, 03030, Afyonkarahisar, Turkey
  5. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42100, Konya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the intestinal and cardiac biomarkers in the determination of intestinal and cardiac damage in dogs with parvoviral enteritis. The material of this study consisted of 10 healthy dogs (control group) and 30 dogs with parvoviral enteritis (experimental group) admitted to the Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University.

Serum samples were extracted from the collected blood samples taken from vena cephalica venipuncture for analysis of blood gases, haemogram and to measure the levels of intestinal-fatty acid-binding protein (I-FABP), trefoil factor 3 (TFF-3), claudin-3 (CLDN-3), heart-type fatty acid-binding protein (H-FABP), cardiac troponin I (cTnI), and creatine kinase-myocardial band (CK-MB) by enzyme linked immunosorbent assay (ELISA) test kits.

Statistically significant decreases in the blood gas hydrogen ion concentration (pH), partial pressure of oxygen (pO2), sodium (Na), bicarbonate (HCO3), and oxygen saturation (SatO2) levels and significant increase in the levels of I-FABP, TFF-3, CK-MB, cTnI and also in the haemogram, a decrease in leukocyte (WBC) level and an increase in platelet (THR) level were detected in parvoviral dogs compared to the control group (p<0.05). Also ROC analysis revealed on 0th hour for the utility of I-FABP and on 48th hour for TFF-3 in differentiating in the experimental group between the survivor and non-survivor dogs. Other intestinal-related biomarker (CLDN-3) and none of the cardiac-related biomarkers (H-FABP, CK-MB and cTnI) are not high enough for prediction of mortality.

In conclusion, it was determined that I-FABP and TFF-3 for the intestinal injury and mortality prediction, and CK-MB and cTnI for the cardiac injury were useful and reliable biomarkers to determine the damage caused by parvovirus in dogs.

Go to article

Authors and Affiliations

E. Gulersoy
M. Ok
R. Yildiz
E. Koral
M. Ider
M. Sevinc
A. Zhunushova
Download PDF Download RIS Download Bibtex

Abstract

Disseminated intravascular coagulation (DIC) is a complex, dynamic and hemostatic disorder which develops secondarily to a disease characterized with an imbalance in the pro-coagulant and anti-coagulant components of hemostasis. The aim of the study is to evaluate hemostatic dysfunc- tion and the DIC syndrome in cattle with displaced abomasum (DA), with using the hematologic analyses and an extensive coagulation profile in the 96 hour-period including before and after surgery. The animal material of the study consisted of 12 dairy cows diagnosed with displaced abomasum (9 LDA and 3 RDA without volvulus) in the 2-4 week period after parturation and with no other post-partum disease. In dairy cows diagnosed with DA, hematological, coagulomet- ric (PT, APTT, Fibrinogen) and coagulation factor analyses [D-Dimer, TAT (thrombin-anti- thrombin complex), ATIII (antithrombin III), PAI-1 (plazminogen activator inhibitor-1] were performed in blood samples obtained before the operation as well as 30 minutes, 60 minutes and 2, 5, 10, 24, 48, 72 and 96 hours after the operation. In the DA cases, abnormalities were found in 6 of the 8 coagulation parameters. In the LDA and RDA groups, prolonged PT (sec), PT (INR) and APTT, hypofibrinogenemia, an increase in serum D-Dimer concentration at 72 and 96 hours after the operation and an increase in serum ATIII concentrations before and 30, 60 minutes and 2, 5, 72 and 96 hours after the operation was found (p<0.05). Hemostatic dysfunction and the risk of DIC developing in DA cases and continuing in the post-operative period was determined.

Go to article

Authors and Affiliations

M. Maden
R. Yildiz
R. Çöl
M. Arican
M. Ider
M. Garip
B. Tras
Download PDF Download RIS Download Bibtex

Abstract

Racecadotril, used as an antidiarrheal drug in humans and some animals such as the dog, inhibits peripheral enkephalinase, which degrades enkephalins and enkephalinase inhibition induces a selective increase in chloride absorption from the intestines. The study material consisted of 46 calves with infectious diarrhea and 14 healthy calves in the age 2-20 days. The calves were divided into eight groups; healthy calves (HG), healthy calves administered racecadotril (HRG), calves with E.coli-associated diarrhea (ECG), calves with E.coli-associated diarrhea administered racecadotril (ECRG), calves with bovine Rotavirus/Coronavirus-associated diarrhea (VG), calves with bovine Rotavirus/Coronavirus-associated diarrhea administered racecadotril (VRG), calves with C. parvum-associated diarrhea (CG) and calves with C. parvum-associated diarrhea administered racecadotril (CRG). Calves in the racecadotril groups received oral racecadotril at a dose of 2.5 mg/kg twice a day for 3 days. A routine clinical examination of all calves was performed. Hemogram and blood gas measurements were made from the blood samples. Standard diarrhea treatment was applied to the HG, ECG, CG, and VG groups. Clinical score parameters such as appetite, feces quality, dehydration, standing and death and some blood gas and hemogram parameters were evaluated to determine the clinical efficacy of racecadotril. Clinical score parameters were determined observationally. Blood gas measurements were performed using a blood gas analyzer. The hemogram was performed using an automated hematologic analyzer. Statistically significant differences were determined in the blood pH, bicarbonate, base deficit, lactate, and total leukocyte count in calves with diarrhea compared to healthy calves. After the treatments, these parameters were found to be within normal limits. At the end of treatment, 42 of the 46 diarrheal calves recovered, while 4 died. We found that racecadotril was effective in improving both clinical recovery and feces consistency in neonatal calves with diarrhea caused by E. coli. As a result, it can be stated that racecadotril, which has an antisecretory effect, is beneficial in the treatment of bacterial diarrhea caused by such as E. coli.
Go to article

Bibliography

1. Al Mawly J, Grinberg A, Prattley D, Moffat J, Marshall J, French N (2015) Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet J 203: 155-160.
2. Amaral-Phillips DM, Scharko PB, Johns JT, Franklin S (2006) Feeding and managing baby calves from birth to 3 months of age. Univ Kentucky Coop Ext Serv 1-6.
3. Aydogdu U, Yildiz R, Guzelbektes H, Naseri A, Akyuz E, Sen I (2018) Effect of combinations of intravenous small-volume hypertonic sodium chloride, acetate Ringer, sodium bicarbonate, and lactate Ringer solutions along with oral fluid on the treatment of calf diarrhea. Pol J Vet Sci 21: 273-280.
4. Berchtold J (2009) Treatment of calf diarrhea: intravenous fluid therapy. Vet Clin North Am Food Anim Pract 25: 73-99.
5. Bergmann JF, Chaussade S, Couturier D, Baumer P, Schwartz JC, Lecomte JM (1992) Effects of acetorphan, an antidiarrhoeal enkephalinase inhibitor, on oro‐caecal and colonic transit times in healthy volunteers. Aliment Pharmacol Ther 6: 305-313
6. Björkman C, Svensson C, Christensson B, De Verdier K (2003) Cryptosporidium parvum and Giardia intestinalis in calf diarrhoea in Sweden. Acta Vet Scand 44: 145-152.
7. Boranbayeva T, Karahan AG, Tulemissova Z, Myktybayeva R, Özkaya S (2020) Properties of a new probiotic candidate and lactobacte-rin-TK2 against diarrhea in calves. Probiotics Antimicrob 12: 918-928.
8. Constable PD (2009) Treatment of calf diarrhea: Antimicrobial and ancillary treatments. Vet Clin North Am Food Anim Pract 25: 101-120.
9. Constable PD, Hinchcliff KW, Done SH, Grünberg, W (2016) Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. 11 th ed., Elsevier Health Sciences, St. Louis, pp:113-137.
10. Coskun A, Sen I, Guzelbektes H, Ok M, Turgut K, Canikli S (2010) Comparison of the effects of intravenous administration of isotonic and hypertonic sodium bicarbonate solutions on venous acid-base status in dehydrated calves with strong ion acidosis. J Am Vet Med 236: 1098-1103.
11. CVMP (2020) List of nationally authorised medicinal products Active substance: racecadotril. EMA/646224/2020.https://www.ema.europa.eu/en/documents/psusa/racecadotrillist-nationally-authorised-medicinal-products-psusa/ 00002602/202003_en.pdf
12. Duval‐Iflah Y, Berard, H, Baumer P, Guillaume P, Raibaud P, Joulin Y, Lecomte JM (1999) Effects of racecadotril and loperamide on bacterial proliferation and on the central nervous system of the newborn gnotobiotic piglet. Aliment Pharmacol Ther 6: 9-14.
13. Eberlin M, Mück T, Michel MC (2012) A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril. Front Pharmacol 3: 93
14. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111: 931-943.
15. Fischbach W, Andresen V, Eberlin M, Mueck T, Layer P (2016) A comprehensive comparison of the efficacy and tolerability of racecadotril with other treatments of acute diarrhea in adults. Front Med (Lausanne) 14: 44.
16. Gibbons JF, Boland F, Buckley JF, Butler F, Egan J, Fanning S, Markey BK, Leonard FC (2014) Patterns of antimicrobioal resistance in pathogenic Escherichia coli isolates from cases of calf enteritis during the spring-calves season. Vet Microbiol 170: 73-80.
17. Hinterleitner TA, Petritsch W, Dimsity G, Berard H, Lecomte JM, Krejs GJ (1997) Acetorphan prevents cholera-toxin-induced water and electrolyte secretion in the human jejunum. Eur J Gastroenterol Hepatol 9: 887-891.
18. Hodges K, Gill R (2010) Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1: 4-21.
19. Katsoulos PD, Karatzia MA, Dovas CI, Filioussis G, Papadopoulos E, Kiossis E, Arsenopoulos K, Papadopoulos T, Boscos C, Karatzias H (2017) Evaluation of the In-Field Efficacy of Oregano Essential Oil Administration on the Control of Neonatal Diarrhea Syndrome in Calves. Res Vet Sci 115: 478–483.
20. Kumar B, Shekhar P, Kumar N (2010) A clinical study on neonatal calf diarrhoea. Intas Polivet 11: 233-235.
21. Lecomte JM (2000) An overview of clinical studies with racecadotril in adults. Int J Antimicrob Agents 14: 81-87.
22. Malik YS, Kumar N, Sharma K, Sharma R, Kumar HB, Anupamlal K, Kumari S, Shukla S, Chandrahekar KM (2013) Epidemiology and genetic diversity of rotavirus strains associated with acute gastroenteritis in bovine, porcine, poultry and human population of Madhya Pradesh, Central India, 2004–2008. Adv Anim Vet Sci 1: 111-115.
23. Matheson AJ, Noble S (2000) Racecadotril. Drugs 59: 829-835.
24. McGuirk SM (2008) Disease management of dairy calves and heifers. Vet Clin North Am Food Anim Pract 24: 139-153.
25. Megeed KN, Hammam AM, Morsy GH, Khalil FA, Seliem MM, Aboelsoued D (2015) Control of cryptosporidiosis in buffalo calves using garlic (Allium sativum) and nitazoxanide with special reference to some biochemical parameters. Glob Vet 14: 646-655.
26. Muheet AT, Ashraf I, Chhibber S, Soodan JS, Singh R, Muhee A, Nazim K, Majeed A (2018) The use of racecadotril as an effective adjunct therapeutic measure in the management of diarrhea. Pharma innov 7: 610-612.
27. Naylor JM (2009) Neonatal Calf Diarrhea. Food Anim Pract 2009 : 70-77.
28. Ok M, Guler L, Turgut K, Ok U, Sen I, Gunduz IK, Birdane MF, Güzelbektes H (2009) The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses Public Health 56: 94-101.
29. Ok M, Sevinc F, Ider M, Ceylan O, Erturk A, Ceylan C, Durgut, MK (2021) Evaluation of clinical efficacy of gamithromycin in the treatment of naturally infected neonatal calves with cryptosporidiosis. Eurasian J Vet Sci 37: 49-54.
30. Ok M, Yildiz R, Hatipoglu F, Baspinar N, Ider M, Üney K, Ertürk A, Durgut MK, Terzi F (2020) Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am J Vet Res 81: 139-146.
31. Primi MP, Bueno L, Baumer P, Berard H, Lecomte JM (1999) Racecadotril demonstrates intestinal antisecretory activity in vivo. Aliment Pharmacol Ther 6: 3-7.
32. Rachmilewitz D, Karmeli F, Chorev M, Selinger Z (1983) Effect of opiates on human colonic adenylate cyclase activity. Eur J Pharmacol 93: 169-173.
33. Renaud DL, Buss L, Wilms JN, Steele MA (2020) Technical note: Is fecal consistency scoring an accurate measure of fecal dry matter in dairy calves? J Dairy Sci 103: 10709-10714.
34. Renaud DL, Kelton DF, Weese JS, Noble C, Duffield TF (2019) Evaluation of a Multispecies Probiotic as a Supportive Treatment for Diarrhea in Dairy Calves: A Randomized Clinical Trial. J Dairy Sci 102: 4498-4505.
35. Schwartz JC (2000) Racecadotril: a new approach to the treatment of diarrhoea. Int J Antimicrob Agents 14: 75-79.
36. Sen I, Altunok V, Ok M, Coskun A, Constable PD (2009) Efficacy of oral rehydration therapy solutions containing sodium bicarbonate or sodium acetate for treatment of calves with naturally acquired diarrhea, moderate dehydration, and strong ion acidosis. J Am Vet Med Assoc 234: 926-934.
37. Sen I, Guzelbektes H, Yildiz R (2013) Neonatal Calf Diarrhea: Pathophysiology, Epidemiology, Clinic, Treatment and Prevention. Turkiye Klinikleri J Vet Sci 4: 71-8.
38. Singh N, Narayan S (2008) Racecadotril: A novel antidiarrheal. Med J. Armed Forces India 64: 361-362.
39. Smith GW, Berchtold J (2014) Fluid therapy in calves. Vet Clin North Am Food Anim Pract 30: 409-427.
40. Trefz FM, Constable PD, Lorenz I (2015) Quantitative physicochemical analysis of acid‐base balance and clinical utility of anion gap and strong ion gap in 806 neonatal calves with diarrhea. J Vet Intern Med 29: 678-687.
41. Trefz FM, Lorenz I, Lorch A, Constable PD (2017) Clinical signs, profound acidemia, hypoglycemia, and hypernatremia are predictive of mortality in 1,400 critically ill neonatal calves with diarrhea. PLoS One 12: e0182938.
42. Tsukano K, Kato S, Sarashina S, Abe I, Ajito T, Ohtsuka H, Suzuki K (2017) Effect of acetate Ringer’s solution with or without 5% dextrose administered intravenously to diarrheic calves. J Vet Med Sci 79: 795-800.
43. Tsunemitsu H, Smith DR, Saif LJ (1999) Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR. Arch Virol 144: 167-175.
44. Turgut K, Ok M (1997) Veteriner Gastroenteroloji. 1st ed., Bahcıvanlar Basımevi, Konya, pp 362-383.
45. Urie NJ, Lombard JE, Shivley CB, Kopral CA, Adams AE, Earleywine TJ, Olson JD, Garry FB (2018) Preweaned Heifer Management on US Dairy Operations: Part V. Factors Associated with Morbidity and Mortality in Preweaned Dairy Heifer Calves. J Dairy Sci 101: 9229-9244.
46. WHO (2007) World Health Organization. Proposal for the inclusion of racecadotril in the WHO model list of essential medicines. WHO Essential medicines list for children: Racecadotril. Paris, France, p 23.
Go to article

Authors and Affiliations

B. Tras
1
M. Ok
2
M. Ider
2
T.M. Parlak
1
R. Yildiz
3
H. Eser Faki
1
Z. Ozdemir Kutahya
4
K. Uney
1

  1. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Ardicli Neighborhood, 42100, Konya, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Ardicli Neighborhood, 42100, Konya, Turkey
  3. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Yakakoy, 15030, Burdur, Turkey
  4. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, Fatih Sultan Mehmet Avenue, 01930, Adana, Turkey

This page uses 'cookies'. Learn more