Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of measuring heat diffusivity and thermal conductivity coefficients of used green foundry sand in temperature

range ambient – 600 o

C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements

of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were

evaluated. It was confirmed that the obtained relationships are complex and that water vaporization strongly influences thermal

conductivity of the moulding sand in the first period of the mould heating by the poured and solidified casting

Go to article

Authors and Affiliations

P.K. Krajewski
G. Piwowarski
J. Buraś
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of measuring attenuation coefficient of the Al-20 wt.% Zn alloy (AlZn20) inoculated with different grain

refiners. During experiments the melted alloys were doped with Al-Ti3-C0.15 refining master alloy. Basing on measurements performed

by Krautkramer USLT2000 device with 1MHz ultrasound wave frequency it was stated that grain refinement reduces the attenuation

coefficient by about 20-25%. However, the examined alloys can be still classified as the high-damping ones of attenuation greater than 150

dB/m.

Go to article

Authors and Affiliations

P.K. Krajewski
W.K. Krajewski
J. Buraś
G. Piwowarski
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn). The system examined was sand cast Zn10

wt. %. Al binary alloy (Zn-10Al) doped with commercial Al-3 wt. % Ti – 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR). Basing on the

measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping

decreases only by about 10 – 20%. The following examinations should establish the influence of the mentioned grain-refinement on

strength and ductility of MAl-Zn cast alloys.

Go to article

Authors and Affiliations

P.K. Krajewski
G. Piwowarski
W.K. Krajewski
J. Buraś
Download PDF Download RIS Download Bibtex

Abstract

The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave damping coefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20). The studied alloy was refined with a modifying (Al,Zn)-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn)-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.
Go to article

Authors and Affiliations

P.K. Krajewski
W.K. Krajewski
K. Haberl-Faerberb
J. Buras

This page uses 'cookies'. Learn more