Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents the design of a miniaturized wearable patch antenna to be utilized for the body area network (BAN) applications. To reduce the size of the antenna a crown fractal geometry antenna design technique has been adopted, and which resulted in a size reduction of 26.85%. Further, the polyester cloth has been used as the substrate of the antenna to make the proposed antenna a flexible one, and suitable for wearable biomedical devices. The designed antenna functions for the 2.45 GHz ISM band and has the gain and bandwidth of 4.54 dB and 131 MHz respectively, covering the entire ISM band. The antenna characteristics like return loss (S11), directivity and radiation pattern have been simulated and analyzed. Specific absorption rate (SAR) and front to back ratio (FBR) of the proposed antenna at the human body tissue model (HBTM) in the planer and different bending conditions of the antenna have also simulated and analyzed, and the proposed antenna fulfils the desired design standards.
Go to article

Bibliography

[1] S. Sindhu, S. Vashisth and S. K. Chakarvati., “A review on wireless body area network (WBAN) for health monitoring system: Implementatioeen protocols,” Communications on Applied Electronics, vol. 4, no. 7, pp. 16-20, Mar. 2016. [2] A. Amsaveni, M. Bharathi and J. N. Swaminathan, "Design and performance analysis of low SAR hexagonal slot antenna using cotton substrate,” Microsystems Technologies, vol. 25, no.6, pp. 2273-2278, Jun. 2019. [3] F. N. Giman, P. J. Soh, M. F. Jamlos, H. Lago, A. A. Al-Hadi and M. A. N. Abdulaziz, “Conformal dual-band textile antenna with metasurface for WBAN application,” Applied Physics A, vol. 123, no. 1, pp. 32 (1-7), Jan. 2017. [4] N. F. M. Aun, P. J. Soh, M. F. Jamlos, H. Lago and A. A. Al-Hadi, “A wideband rectangular-ring textile antenna integrated with corner-notched artificial magnetic conductor (AMC) plane,” Applied Physics A, vol.123, no.1, pp. 19 (1-6), Jan. 2017. [5] B. S. Dhaliwal, S. S. Pattnaik, “BFO-ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system,” Neural Computing and Applications, vol. 28, no 1, pp. 917-928, Dec. 2017. [6] C. A. Balanis, “Antenna Theory: Analysis and Design,” 2nd ed., Singapore: Wiley, 2005. [7] J. G. Joshi, S. S. Pattnaik and S. Devi, “Metamaterial embedded wearable rectangular microstrip patch antenna,” International Journal of Antennas and Propagation, vol. 2012, pp. 1-9, Sep. 2012. [8] S. Roy and U. Chakraborty, “Metamaterial based dual wideband wearable antenna for wireless applications,” Wireless Personal Communications, vol. 106, no. 3, pp. 1117-1133, Jun. 2019. [9] E. Thangaselvi and K. Meena alias Jeyanthi, “Implementation of flexible denim nickel copper rip stop textile antenna for medical application,” Cluster Computing, vol.22, no. 1, pp. 635-645, Feb. 2018. [10] M. P. Joshi, J. G. Joshi and S. S. Pattnaik, “Hexagonal slotted wearable microstrip patch antenna for body area network, IEEE Pune Section International Conference, 18-20 Dec. 2019. [11] A. Amsaveni, M. Bharathi and J. N. Swaminathan, “Design and performance analysis of low SAR hexagonal slot antenna using cotton substrate,” Microsystem Technologies, vol. 25, no. 6, pp. 2273-2278, Jun. 2019. [12] E. A. Mohammad, A. Hasliza, H. A. Rahim, P. J. Soh, M. F. Jamlos, M. Abdulmalek and Y. S. Lee, “Dual-band circularly polarized textile antenna with split-ring slot for off-body 4G LTE and WLAN applications,” Applied Physics A, vol. 124, no. 8, pp. 568 (1-10), Aug. 2018. [13] M. E. Jalil., M. K. A. Rahim, N. A. Samsuri, R. Dewan and K. Kamardin, “Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RIFD application,” Applied Physics A, vol. 123, no. 1, pp. 48 (1-5), Jan. 2017. [14] P. J. Gogoi, S. Bhattacharyya and N. S. Bhattacharyya, “Linear low density polyethylene (LLDPE) as flexible substrate for wrist and arm antennas in C-band,” Journal of Electronic Materials, vol. 44, no. 4, pp. 1071-1080, Apr. 2015. [15] M. N. Ramli., P. J. Soh, M. F. Jamlos, H. Lago., N. M. Aziz and A. A. Al-Hadi, “Dual-band wearable fluidic antenna with metasurface embedded in a PDMS substrate,” Applied Physics A, vol. 123, no. 2, pp. 149 (1-7), Feb. 2017. [16] http://www.fcc.gov/encylopedia/specific-absorption-rate-sar-cellulattelephones. [17] A. Y. I. Ashyap, Z. Z. Abidin, S. H. Dahlan, H. A. Majid, M. R. Kamarudin and A. A. Alhameed, “Robust low-profile electromagnetic band-gap- based on textile wearable antennas for medical application,” International workshop on Antenna Technology, Small Antennas, Innovative Structures, and Applications, Athens, Greece, 1-3 Mar. 2017.
Go to article

Authors and Affiliations

Vikas Jain
1
Balwinder Singh Dhaliwal
2

  1. Research Scholar of IK Gujral Punjab Technical University, Kapurthala, Punjab, India
  2. Faculty of Electronics & Communication Engineering Department, National Institute of Technical Teachers’ Training and Research, Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

Digital system algorithms such as FFT algorithms, convolution, image processing algorithm, etc. deploy Multiply and Accumulate (MAC) unit as an evaluative component. The efficiency of a MAC typically relies on the speed of operation, power dissipation, and chip area along with the complexity level of the circuit. In this research paper, a power-delay-efficient signed-floating-point MAC (SFMAC) is proposed using Universal Compressor based Multiplier (UCM). Instead of having a complex design architecture, a simple multiplexer-based circuit is used to achieve a signed-floating output. The 8£8 SFMAC can take 8-bit mantissa and 3-bit exponent and therefore, the input to the SFMAC can be in the range of –(7.96875)10 to +(7.96875)10. The design and implementation of the proposed architecture is executed on the Cadence Spectre tool in GPDK 90 nm and TSMC 130 nm CMOS, which proves as power and delay efficient.

Go to article

Authors and Affiliations

R. Sarma
C. Bhargava
S. Jain
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a low power highly sensitive Triple Metal Surrounding Gate (TM-SG) Nanowire MOSFET photosensor is proposed which uses triple metal gates for controlling short channel effects and III–V compound as the channel material for effective photonic absorption. Most of the conventional FET based photosensors that are available use threshold voltage as the parameter for sensitivity comparison but in this proposed sensor on being exposed to light there is a substantial increase in conductance of the GaAs channel underneath and, thereby change in the subthreshold current under exposure is used as a sensitivity parameter (i.e., Iillumination/IDark). In order to further enhance the device performance it is coated with a shell of AlxGa1-xAs which effectively passivates the GaAs surface and provides a better carrier confinement at the interface results in an increased photoabsorption. At last performance parameters of TM-SG Bare GaAs Nanowire MOSFET are compared with TM-SG core-shell GaAs/AlGaAs Nanowire MOSFET and the results show that Core-Shell structures can be a better choice for photodetection in visible region.

Go to article

Authors and Affiliations

S.K. Sharma
A. Jain
B. Raj
Download PDF Download RIS Download Bibtex

Abstract

This study attempted to examine the impacts of academic locus of control and metacognitive awareness on the academic adjustment of the student participants. The convenient sampling was applied to select the sample of 368 participants comprising 246 internals with age ranging from 17 to 28 years (M = 20.52, SD = 2.10) and 122 externals with age spanning from 17 to 28 years (M = 20.57, SD = 2.08). The findings indicated that there were significant differences in the various dimensions of metacognition, academic lifestyle and academic achievement of the internals and externals except for academic motivation and overall academic adjustment. There were significant gender differences in declarative knowledge, procedural knowledge, conditional knowledge, planning, information management, monitoring, evaluation and overall metacognitive awareness. Likewise, the internals and externals differed significantly in their mean scores of declarative knowledge, procedural knowledge, conditional knowledge, planning, information management, monitoring, debugging, evaluation and overall metacognitive awareness, academic lifestyle and academic achievement. The significant positive correlations existed between the scores of metacognitive awareness and academic adjustment. It was evident that the internal academic locus of control and metacognitive awareness were significant predictors of academic adjustment of the students. The findings have been discussed in the light of recent findings of the field. The findings of the study have significant implications to understand the academic success and adjustment of the students and thus, relevant for teachers, educationists, policy makers and parents. The future directions for the researchers and limitations of the study have also been discussed.

Go to article

Authors and Affiliations

Deepika Jain
Gyanesh Kumar Tiwari
Ishdutta Awasthi
Download PDF Download RIS Download Bibtex

Abstract

Noise measurements have been carried out at eleven different sites located in three prominent cities of the Tarai region of India to evaluate the effectiveness of vegetation belts in reducing traffic noise along the roadsides. Attenuation per doubling of distance has been computed for each site and excess attenuation at different 1/3 octave frequencies has been estimated. The average excess attenuation is found to be approximately 15 dB over the low frequencies (200 Hz to 500 Hz) and between 15 dB to 20 dB over the high frequencies (8 kHz to 12.5 kHz). Over the critical middle frequencies (1-4 kHz), the average excess attenuation (between 10-15 dB) though not as high, is still significant, with a number of sites showing an excess attenuation of 15 dB or more at 1 kHz. The results indicate that sufficiently dense vegetation belts along the roadsides may prove as effective noise barriers and significant attenuation may be achieved over the critical middle frequencies (1-4 kHz).
Go to article

Authors and Affiliations

Vikrant Tyagi
Krishan Kumar
V.K. Jain
Download PDF Download RIS Download Bibtex

Abstract

The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

Go to article

Authors and Affiliations

Abhinandan Jain
Calvin Kuo
Paramsothy Jayakumar
Jonathan Cameron

This page uses 'cookies'. Learn more