Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Titanium dioxide with its ability to be a UV light blocker is commonly used as a physical sunscreen in the cosmetic industry. However, the safety issues of TiO 2 application should be considered more in-depth, e.g., UV light-induced generation of reactive oxygen species which can cause DNA damage within skin cells. The proper modification of titanium dioxide to significantly limit its photocatalytic properties can contribute to the safety enhancement. The modification strategies including the process conditions and intrinsic properties of titanium dioxide were discussed. The selected examples of commercially available TiO 2 materials as potential components of cosmetic emulsions dedicated for sunscreens were compared in this study. Only rutile samples modified with Al 2O 3 and/or SiO 2 showed inhibition of photocatalytic activity.
Go to article

Authors and Affiliations

Marcin Janczarek
1
ORCID: ORCID
Waldemar Szaferski
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aims at exploring the conceptualisations of writing in the language-oriented Curricula of Polish and South African education in Grades 4–8 and 4–9, respectively. Using Ivanič's model we show how writing is framed in literacy education in Poland and South Africa. The findings suggest in general that curriculum developers in both countries tend to view writing as a set of genres and skills. Comparisons made between Polish and South African curricula reveal some differences both in conceptualising writing and in the presence of discourses of writing. In comparison to the Polish curricula, the South African ones are much more detailed, which what can mainly be traced back to their different formal structure. Nevertheless, implications for policy and curriculum development in both countries include a need for greater consideration of the complexities of writing.
Go to article

Authors and Affiliations

Monika Kowalonek-Janczarek
1
ORCID: ORCID
Michael M. Kretzer
2 3
ORCID: ORCID

  1. Uniwersytet im. Adama Mickiewicza w Poznaniu
  2. Ruhr-Universität Bochum
  3. University of the Western Cape
Download PDF Download RIS Download Bibtex

Abstract

Cosmetic emulsion bases containing extracts from natural plants were produced. The emulsifier was an aqueous solution of self-emulsifying base made from apricot kernel oil and soy lecithin, while the oil phase was based on coconut, almond or grape seed oils. In addition, mixtures enriched with vegetable glycerine were produced. It was found that for the emulsions with almond oil as the concentration of the oil phase increased, the value of the average Sauter diameter increased. In comparison, results for emulsions with coconut oil and emulsions with grapeseed oil did not give such a clear relationship. It was also shown that for stable emulsions, the self-emulsifying base of apricot kernel oil performed much better than soy lecithin. The addition of vegetable glycerine to the mixture resulted in a reduction of the average droplet diameter. Produced emulsions were also visually observed for 60 days to assess their stability and possible aging processes. In order to exclude the formation of microorganisms, periodic density control and microscopic examinations were carried out. The presence of microorganisms 30 in the analysed emulsion was evaluated using microscopic and culture techniques. No tarnish waso bserved on the surface of the samples, indicating the formation of mould, which can lead to poisoning and the development of allergies, respiratory diseases, liver diseases, ulcers, or bleeding in the intestines.
Go to article

Authors and Affiliations

Waldemar Szaferski
1
ORCID: ORCID
Piotr T. Mitkowski
1
ORCID: ORCID
Marcin Janczarek
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more