Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Four Geodynamical Expeditions of the Polish Academy of Sciences carried through wide research seismic program in West Antarctica in 1979-1991. Three of these expeditions operated in the Bransfield Strait. The experiment of deep refraction and wide-angle reflection in West Antarctica focused on deep structure of the lithosphere, mainly of the Earth's crust. The network of deep seismic soundings (DSS) profiles covered all the Bransfield Strait. Five land stations on the South Shetland Islands, three stations on the Antarctic Peninsula and nine ocean bottom seismographs (OBS) recorded seismic waves, generated by explosions in a sea. The Bransfield Rift and the Bransfield Platform form a marginal basin against a volcanic arc of the South Shetland Islands. The paper presents new results of 2-D seismic modeling for network of five selected profiles. Four of them, ranging in lenght from 150 to 190 km, crossed main structures of the Bransfield Strait and the fifth, which connected the other ones and was 310 km long, ran along the Bransfield Rift. Two or three seismic models were presented for each profile. Finally, mutually corrected and controlled 2-D models of described profiles were constructed. They all presented spatial complex structure of the Earth's crust in a young rift of the Bransfield Strait, including extent of its main element i.e. anomalous high velocity body (HVB) (Vp > 7.4 km/s), detected in 10-30 km depth range except profile DSS-4 (southwest part of the Bransfield Strait). This inhomogeneity is interpreted as intrusion of the upper mantle (?asthenosphere) during stretching of the continental crust. The Moho discontinuity was found at depth 30-35 km, with velocities equal to about 8.1 km/s.

Go to article

Authors and Affiliations

Tomasz Janik

Authors and Affiliations

Tomasz Janik
1
Wojciech Czuba
2

  1. Institute of Geophysics, Polish Avcademy of Sciences
  2. Institute of Geophysics, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

During the Polish Antarctic Geodynamic Expeditions, 1979-91, a wide geophysical and geological programme was performed in the transition zone between the Drake and South Shetland microplates and the Antarctic Plate, in West Antarctica. In the Bransfield Strait area, and along passive continental margin of the Antarctic Peninsula, 20 deep seismic sounding profiles were made. The interpretation yielded two - dimensional models of the crust and lithosphere down to 80 km depth. In the coastal area between the Palmer Archipelago and the Adelaide Island, the Earth's crust has a typical continental structure. Its thickness varies from 36 to 42 km in the coastal area, decreasing to about 25-28 km toward Pacific Ocean. In the surrounding of Bransfield Strait, the Moho boundary depth ranges from 10 km beneath the South Shetland Trench to 40 km beneath Antarctic Peninsula. The crustal structure beneath the Bransfield Strait trough is highly anomalous. Presence of a high-velocity body, with longitudinal seismic wave velocities Vp > 7,0 km/s, was detected there in the 6-32 km depth range. This inhomogeneity was interpreted as an intrusion, coinciding with the Deception-Bridgeman volcanic line. In the transition zone from the Drake Passage to the South Shetland Islands, a seismic boundary in the lower lithosphere occurs at a depth ranging from 35 to 80 km. The dip of both the Moho and this boundary is approximately 25° towards the southeast, indicating the direction of subduction of the Drake Plate lithosphere under the Antarctic Plate. Basing on the results of four Polish Geodynamic Expeditions, the map of crustal thickness in West Antarctica is presented.

Go to article

Authors and Affiliations

Aleksander Guterch
Marek Grad
Tomasz Janik
Piotr Środa
Download PDF Download RIS Download Bibtex

Abstract

The lithospheric transect South Shetland Islands (SSI) — Antarctic Peninsula (AP) includes: the Shetland Trench (subductional) and the adjacent portion of the SE Pacific oceanic crust; the South Shetland Microplate (younger magmatic arc superimposed on continental crust); the Bransfield Rift and Platform (younger back-arc basin); the Trinity Horst (older magmatic arc superimposed on continental crust); the Gustav Rift (Late Cenozoic) and James Ross Platform (older back-arc basin). Deep seismic sounding allowed to trace the Moho discontinuity at about 30 km under South Shetlands and at 38—42 km in the northern part of Antarctic Peninsula (Trinity Horst), under typical continental crust. Modified crust was recognized under Bransfield Strait. Geological interpretation based on deep seismic refraction and multichannel reflection soundings, and surface geological data, is presented.

Go to article

Authors and Affiliations

Krzysztof Birkenmajer
Aleksander Guterch
Marek Grad
Tomasz Janik
Edward Perchuć
Download PDF Download RIS Download Bibtex

Abstract

Three Polish Antarctic Geodynamical Expeditions in 1979/80, 1984/85 and 1987/88 undertook seismic investigations in West Antarctica. Seismic measurements, including multichannel seismic reflection and deep seismic soundings, were carried out in the region of the west coast of the Antarctic Peninsula, between Antarctic Sound and Adelaide Island, Bransfield Strait, South Shetland Islands and South Shetland Trench along several lines with a total length of about 5000 km. Selected crustal sections and one and two-dimensional models of the crust for this area are discussed in detail. The thickness of the crust ranges from 30-33 km in the South Shetland Islands to 38—45 km near the coast of the Antarctic Peninsula. The crustal structure beneath the through of Bransfield Strait is highly anomalous; a seismic discontinuity with velocities of 7.0—7.2 km/s was found at a depth of 10 to 15 km, and a second discontinuity with velocities of about 7.6 km/s was found at a depth of 20—25 km. A seismic inhomogeneity along the Deception-Penguin-Bridgeman volcanic line has also been found. A scheme for the geotectonic division and a geodynamical model of the area are discussed. On the base of all experimental seismic data, it will be possible to construct a continuous geotraverse from Elephant Island, across Bransfield Strait, up to Adelaide Island with a total length of about 1100 km. Crustal section and seismic models along the northern segment of the geotraverse from the King George Island to the Palmer Archipelago are discussed in detail here.

Go to article

Authors and Affiliations

Aleksander Guterch
Marek Grad
Tomasz Janik
Edward Perchuć
Download PDF Download RIS Download Bibtex

Abstract

During the Polish Antarctic Geodynamical Expeditions in 1979-91, deep seismic sounding measurements were performed in the transition zone between the Drake and South Shetland Microplates and the Antarctic Plate in West Antarctica. For the Bransfield Strait area, the seismic records of five land stations in South Shetland Islands and two stations at the Antarctic Peninsula were used. The interpretation yielded two—dimensional models of the crust and lithosphere down to 80 km depth. In the uppermost crust, the unconsolidated and poorly consolidated young sediments with velocities of 1.9 — 2.9 km/s cover the layers 4.0—4.2 and 5.6—5.9 km/s. The crustal structure beneath the trough of Bransfield Strait is highly anomalous. The presence of a high velocity body, with longitudinal seismic wave velocities vp > 7.0 km/s, was detected in the 6 — 30 km depth range. This inhomogeneity was interpreted as an intrusion, coinciding with the Deception—Bridgeman volcanic line. For the uppermost crust, a qualitative comparison was made between the results from the reflection profiles (GUN) and deep seismic sounding profiles (DSS). In the study area, the Moho boundary depth ranges from 10 km beneath the South Shetland Trench to 40 km under the Antarctic Peninsula. In the transition zone from the Drake Passage to the South Shetland Islands, a seismic boundary in the lower lithosphere occurs at a depth ranging from 35 to 80 km. The dip of both the Moho and this boundary is approximately 25°, and indicates the direction of subduction of the Drake Plate lithosphere under the Antarctic Plate. The results obtained were compared with earlier results of seismic, gravity and magnetic surveys in West Antarctica. A scheme of geotectonic division and a geodynamical model of the zone of subduction of the Drake Plate under the Antarctic Plate is compared with subduction zones in other areas of the circum-Pacific belt.

Go to article

Authors and Affiliations

Marek Grad
Aleksander Guterch
Tomasz Janik
Piotr Środa
Download PDF Download RIS Download Bibtex

Abstract

The Polish Geophysical Expedition to West Antarctica in 1979-1980 was carried out by the Institute of Geophysics, Polish Academy of Sciences. Beside deep seismic soundings, 12 multi-channel seismic profiles, with a total length of ca 1000 km have been recorded north and east of the South Shetland Islands and in the Bransfield Strait, but they have never before been completely interpreted and published. All profiles have been processed with modern processing flow including time migration. Profiles crossing the South Shetland Trench revealed distinct reflector inside continental slope, which has been interpreted as border between buried accretionary prism and overlying slope sediments of glacial-marine origin. Profiles in the Bransfield Strait show traces of the Last Glacial Maximum (LGM) in the form of glacial foreground valleys, with some of them used as weak spots for young age volcanic intrusions. This paper is the first comprehensive geological interpretation of collected dataset and differences between results from other expeditions are discussed.
Go to article

Authors and Affiliations

Jan Okoń
ORCID: ORCID
Jerzy Giżejewski
Tomasz Janik

This page uses 'cookies'. Learn more