Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, a mid infrared thermography was used to study thermal behavior of solid oxide fuel cell (SOFC) with a circular shape and a diameter of 90 mm. The emissivity of the anodic surface of the fuel cell was determined to be from 0.95 to 0.46 in the temperature range 550-1200 K and the profile and temperature distribution of the anodic surface of the unloaded cell was given. The surface temperature of the cell was determined during operation and the polarity changes from open circuit voltage (OCV) to 0.0 V. It was found that the cell self-heating effect decreases with increasing temperature of the cell.

Go to article

Authors and Affiliations

M. Jasiński
K. Ziewiec
M. Wojciechowska
Download PDF Download RIS Download Bibtex

Abstract

One of the ways to decrease thermal conductivity is nano structurization. Cobalt triantimonide (CoSb3) samples with added indium or tellurium were prepared by the direct fusion technique from high purity elements. Ingots were pulverized and re-compacted to form electrodes. Then, the pulsed plasma in liquid (PPL) method was applied. All materials were consolidated using rapid spark plasma sintering (SPS). For the analysis, methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with a laser flash apparatus (LFA) were used. For density measurement, the Archimedes’ method was used. Electrical conductivity was measured using a standard four-wire method. The Seebeck coefficient was calculated to form measured Seebeck voltage in the sample placed in a temperature gradient. The preparation method allowed for obtaining CoSb3 nanomaterial with significantly lower thermal conductivity (10 Wm–1K–1 for pure CoSb3 and 3 Wm–1K–1 for the nanostructured sample in room temperature (RT)). The size of crystallites (from SEM observations) in the powders prepared was about 20 nm, joined into larger agglomerates. The Seebeck coefficient, α, was about –200 µVK–1 in the case of both dopants, In and Te, in microsized material and about –400 µVK–1 for the nanomaterial at RT. For pure CoSb3, α was about 150 µVK–1 and it stood at –50 µVK–1 for nanomaterial at RT. In bulk nanomaterial samples, due to a decrease in electrical conductivity and inversion of the Seebeck coefficient, there was no increase in ZT values and the ZT for the nanosized material was below 0.02 in the measured temperature range, while for microsized In-doped sample it reached maximum ZT = 0.7 in (600K).

Go to article

Authors and Affiliations

R. Zybała
M. Schmidt
K. Kaszyca
M. Chmielewski
M.J. Kruszewski
M. Jasiński
M. Rajska
Ł. Ciupiński

This page uses 'cookies'. Learn more