Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
Go to article

Authors and Affiliations

Damian Joachimiak
Piotr Krzyślak
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses thermodynamic phenomena accompanying the flow of gas in a slotted seal. The analysis of the gas flow has been described based on an irreversible adiabatic transformation. A model based on the equation of total enthalpy balance has been proposed. The iterative process of the model aims at obtaining such a gas temperature distribution that will fulfill the continuity equation. The model allows for dissipation of the kinetic energy into friction heat by making use of the Blasius equation to determine the friction coefficient. Within the works, experimental research has been performed of the gas flow in a slotted seal of slot height 2 mm. Based on the experimental data, the equation of local friction coefficient was modified with a correction parameter. This parameter was described with the function of pressure ratio to obtain a mass flow of the value from the experiment. The reason for taking up of this problem is the absence of high accuracy models for calculating the gas flow in slotted seals. The proposed model allows an accurate determination of the mass flow in a slotted seal based on the geometry and gas initial and final parameters.

Go to article

Authors and Affiliations

Damian Joachimiak
Piotr Krzyślak
Download PDF Download RIS Download Bibtex

Abstract

Thermochemical treatment processes are used to produce a surface layer of the workpiece with improved mechanical properties. One of the important parameters during the gas nitriding processes is the temperature of the surface. In thermochemical treatment processes, there is a problem in precisely determining the surface temperature of heat-treated massive components with complex geometries. This paper presents a simulation of the heating process of a die used to extrude aluminium profiles. The maximum temperature differences calculated in the die volume, on the surface and at the most mechanically stressed edge during the extrusion of the aluminum profiles were analysed. The heating of the die was simulated using commercial transient thermal analysis software. The numerical calculations of the die assumed a boundary condition in the form of the heat transfer coefficient obtained from experimental studies in a thermochemical treatment furnace and the solution of the nonstationary and non-linear inverse problem for the heat conduction equation in the cylinder. The die heating analysis was performed for various heating rates and fan settings. Major differences in the surface temperature and in the volume of the heated die were obtained. Possible ways to improve the productivity and control of thermochemical treatment processes were identified. The paper investigates the heating of a die, which is a massive component with complex geometry. This paper indicates a new way to develop methods for the control of thermochemical processing of massive components with complex geometries.
Go to article

Authors and Affiliations

Damian Joachimiak
1
Wojciech Judt
1
Magda Joachmiak
1

  1. Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The pressure of wet water vapor inside a condenser has a great impact on the efficiency of thermal cycle. The value of this pressure depends on the mass share of inert gases (air). The knowledge of the spots where the air accumulates allows its effective extraction from the condenser, thus improving the conditions of condensation. The condensation of water vapor with the share of inert gas in a model tube bank of a condenser has been analyzed in this paper. The models include a static pressure loss of the water vapor/air mixture and the resultant changes in the water vapor parameters. The mass share of air in water vapor was calculated using the Dalton’s law. The model includes changes of flow and thermodynamic parameters based on the partial pressure of water vapor utilizing programmed water vapor tables. In the description of the conditions of condensation the Nusselts theory was applied. The model allows for a deterioration of the heat flow conditions resulting from the presence of air. The paper contains calculations of the water vapor flow with the initial mass share of air in the range 0.2 to 1%. The results of calculations clearly show a great impact of the share of air on the flow conditions and the deterioration of the conditions of condensation. The data obtained through the model for a given air/water vapor mixture velocity upstream of the tube bank allow for identification of the spots where the air accumulates.

Go to article

Authors and Affiliations

Magda Joachimiak
Damian Joachimiak
Piotr Krzyślak

This page uses 'cookies'. Learn more