Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The problem of gender imbalance in Polish science is a clear and widely documented fact confirmed by numerous scientific studies. The gender imbalance affects both women and men depending on scientific disciplines and the level of scientific careers. The sources of this situation, leading to morally unacceptable exclusion of certain demographic groups and the underutilisation of society's full intellectual potential, are both 1) cultural and social aspects and the associated prejudice and discrimination, and 2) institutional aspects, including, inter alia, low and unequal salaries and the widespread use of anachronistic models of assessing scientific excellence that exclude non-traditional career paths and ways of conducting scientific research. In order to broaden the public dialogue on the gender imbalance in science in Poland, on 10.02.2023, the Polish Young Academy of the Polish Academy of Sciences (PAS), together with the National Science Centre, the Office of Science Promotion of the PolSCA PAS in Brussels and the Research Centre for Women's Participation in Public Space of the UAM in partnership with the L'Oreal Foundation, organised a conference entitled “Research excellence has no gender”. The event, attended by representatives and authorities of many organisations of the scientific community in Poland, inaugurated a long-term programme under the name “Research excellence has no gender”. The event aimed to draw attention to the existing disparities in science and the need to develop and introduce changes to reduce these disparities.
Go to article

Authors and Affiliations

Marta Gmurek
1 2
Anna Kłos
1 3
Jacek Ł. Kolanowski
1 4

  1. Akademia Młodych Uczonych PAN
  2. Politechnika Łódzka
  3. Wojskowa Akademia Techniczna
  4. Instytut Chemii Bioorganicznej PAN
Download PDF Download RIS Download Bibtex

Abstract

This review paper presents research results on geodetic positioning and applications carried out in Poland, and related to the activities of the International Association of Geodesy (IAG) Commission 4 “Positioning and Applications” and its working groups. It also constitutes the chapter 4 of the national report of Poland for the International Union of Geodesy and Geodynamics (IUGG) covering the period of 2015-2018. The paper presents selected research, reviewed and summarized here, that were carried out at leading Polish research institutions, and is concerned with the precise multi-GNSS (Global Navigation Satellite Systems) satellite positioning and also GNSS-based ionosphere and troposphere modelling and studies. The research, primarily carried out within working groups of the IAG Commission 4, resulted in important advancements that were published in leading scientific journals. During the review period, Polish research groups carried out studies on multi-GNSS functional positioning models for both relative and absolute solutions, stochastic positioning models, new carrier phase integer ambiguity resolution methods, inter system bias calibration, high-rate GNSS applications, monitoring terrestrial reference frames with GNSS, assessment of the real-time precise satellite orbits and clocks, advances in troposphere and ionosphere GNSS remote sensing methods and models, and also their applications to weather, space weather and climate studies.

Go to article

Authors and Affiliations

Paweł Wielgosz
Tomasz Hadaś
Anna Kłos
Jacek Paziewski
Download PDF Download RIS Download Bibtex

Abstract

We present a summary of research carried out in 2019–2022 in Poland in the area of general theory and methodology in geodesy. The study contains a description of original contributions by authors affiliated with Polish scientific institutions. It forms part of the national report presented at the 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG) taking place on 11-20 July 2023 in Berlin, Germany. The Polish authors developed their research in the following thematic areas: robust estimation and its applications, prediction problems, cartographic projections, datum transformation problems and geometric geodesy algorithms, optimization and design of geodetic networks, geodetic time series analysis, relativistic effects in GNSS (Global Navigation Satellite System) and precise orbit determination of GNSS satellites. Much has been done on the subject of estimating the reliability of existing algorithms, but also improving them or studying relativistic effects. These studies are a continuation of work carried out over the years, but also they point to new developments in both surveying and geodesy.We hope that the general theory and methodology will continue to be so enthusiastically developed by Polish authors because although it is not an official pillar of geodesy, it is widely applicable to all three pillars of geodesy.
Go to article

Authors and Affiliations

Anna Klos
1
ORCID: ORCID
Marcin Ligas
2
ORCID: ORCID
Marek Trojanowicz
3
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland
  2. AGH University of Science and Technology, Krakow, Poland
  3. Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

For over two decades, an essential information about global monthly gravity variations is provided by the GRACE mission and its successor, the GRACE Follow-On (GRACE-FO) mission. The temporal variations in gravity field from GRACE/GRACEFO are determined based on the measurement of distance changes between two identical satellites using microwave ranging instruments. This process is carried out by various processing centers, which adopt different processing strategies and background models. This causes discrepancies in the resulting gravity fields.We address this problem by determining a monthly homogenous GRACE-FO gravity field solutions from June 2018 to November 2022 as provided by different processing centers included in the Science Data System (SDS) project, i.e. the Center for Space Research (CSR), the German Research Center for Geosciences (GFZ) and the Jet Propulsion Laboratory (JPL). We test three different weighting schemes. We show that for the last 4 years, at least 65% of continental areas are characterized by water decrease. We show that proposed merged solutions contain more signal information than individual ones based on the square root of the degree variance values.We note that the largest signal differences between individual and combined solutions occur for sectoral coefficients up to degree 40, and for zonal coefficients, the signal differences are twice as small.We also present that the differences in the spherical harmonic coefficients cause differences in global and local equivalent water height (EWH) changes. For example, the proposed merged solutions reduce root mean square scatter ofEWHby 5–15% comparing to individual solutions.
Go to article

Authors and Affiliations

Artur Lenczuk
1
ORCID: ORCID
Anna Klos
1
ORCID: ORCID
Janusz Bogusz
1
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Gravity Recovery and Climate Experiment (GRACE) mission data is widely used in various fields of science. GRACE explored changes of the gravity field regularly from April 2002 to June 2017. In the following research, we examine variance of signal contained in two different formats of GRACE data: standard spherical harmonics and mass concentration blocks (so-called “mascons”) solutions, both provided in the most recent releases. For spherical harmonics-based solution, we use monthly gravity field solutions provided up to degree and order (d/o) 96 by three different computing centers, i.e. the NASA’s Jet Propulsion Laboratory (JPL), the German Research Center for Geosciences (GFZ) and the Center for Space Research (CSR). For the mass concentration blocks, we use values of total water storage provided by the CSR, JPL and the Goddard Space Flight Center (GSFC) computing centers, which we convert to spherical harmonic coefficients up to d/o 96. We show that using the anisotropic DDK3 filter to smooth the north-south stripes present in total wate storage obtained from standard spherical harmonics solution leaves more information than common isotropic Gaussian filter. In the case of mascons, GSFC solution contains much more information than the CSR and JPL releases, relevant for corresponding d/o. Differences in variance of signal arise from different background models as well as various shape and size of mascons used during processing of GRACE observations.

Go to article

Authors and Affiliations

Artur Lenczuk
ORCID: ORCID
Grzegorz Leszczuk
Anna Klos
ORCID: ORCID
Janusz Bogusz
ORCID: ORCID

This page uses 'cookies'. Learn more