Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the mor-phological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
Go to article

Authors and Affiliations

Shubhangani Sharma
1
ORCID: ORCID
Jyotshana Sharma
1
ORCID: ORCID
Vineet Soni
1
ORCID: ORCID
Hazem M. Kalaji
2
ORCID: ORCID
Nabil I. Elsheery
3
ORCID: ORCID

  1. Mohanlal Sukhadia University, Department of Botany, Udaipur, India
  2. Institute of Technology and Life Sciences, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  3. Tanta University, Faculty of Agriculture, Agricultural Botany Department, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Plant growth-promoting rhizobacteria (PGPR) isolated from the rhizosphere soil of eight field crops at different locations in Egypt were identified. Rhizobacteria strains were identified as Bacillus endophyticus AW1 5, B. filamentosus EM9, ET3, Micrococcus luteus KT2, FW9, FC13, SaW4, Enterobacter cloacae SK18, Pseudomonas azotoformans TPo10, Citrobacter braakii TC3. All isolates solubilised insoluble phosphate and produced IAA, while only six were able to produce siderophores in vitro. Vegetative growth and yield of wheat cv. ‘Sakha 94’ were enhanced after the application of single inoculation of each isolate compared to the control. Grain yield was increased by 20.7– 96.5% over the control according to bacterial isolates. Available phosphorus (P) and counts of total bacteria in soil were observed to be significantly increased in treatments than in control. After the wheat harvest, soil pH was observed to be decreased, and a highly significant negative correlation was observed between soil pH and the levels of available phosphorus. Significant increases in grain and straw yields, as well as uptake of nitrogen (N) and P by plants, were observed due to inoculation with PGPR isolates. Levels of photosynthetic pigments, free amino acids, free phenolics, and reducing sugars in flag leaf and spikes were significantly enhanced by the application of all PGPR isolates compared to the control. Thus this study identifies the PGPR isolates for the improvement of the growth, yield, and quality of wheat. The study may be also useful for field evaluation under different soils and environmental conditions before generalising PGPR isolates as biofertilisers.
Go to article

Authors and Affiliations

Samy A.E.M. Abdelazeem
1
Samar M. Al-Werwary
2
Taha A.E. Mehana
2
Mohamed A. El-Hamahmy
1
ORCID: ORCID
Hazem M. Kalaji
3
ORCID: ORCID
Anshu Rastogi
4
ORCID: ORCID
Nabil I. Elsheery
5
ORCID: ORCID

  1. Suez Canal University, Faculty of Agriculture, Department of Soil and Water, Ismailia, Egypt
  2. Suez Canal University, Faculty of Agriculture, Department of Agricultural Botany, Ismailia, Egypt
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  4. Poznan University of Life Sciences, Department of Ecology and Environmental Protection, Laboratory of Bioclimatology, Poznań, Poland
  5. Tanta University, Faculty of Agriculture, Agricultural Botany Department, Seberbay Campus, 31257, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The depletion of natural resources such as freshwater and cropland makes it necessary to find a new solution for sustainable food production. Aquaponic systems seem to be a great alternative to traditional agriculture, however, there are still many unknowns that need to be explored. It is already known how fish stocking affects water quality in aquaponic systems, but not how it affects the plants’ growth, and especially on chlorophyll fluorescence. In this study, we examined how the density of 0, 2, 4, 8, and 16 stocking fish in five aquaria affects lettuce growth. The first tank was only a hydroponic system with plants but without fish (control). In the remaining four aquaria – 2, 4, 8 and 12 specimens of common carp fry with an average weight of 20 grams (average 8.5–33.2 g) were placed in the aquaponic growing system. Physicochemical analysis of water was conducted to determine the levels of pH, electrical conductivity ( EC), N-NO 3, N-NO 2, N-NH 4, P-PO 4, O 2 and physiological parameters of plants (nitrogen balance index – NBI, chlorophyll content index – CCI, quantum yield – QY, flavonoid content – Flv) were analysed. The results showed that fish stocking density has different effects on plant physiological parameters, but in most cases, was insignificant. It seems that the greater number of fishes and higher density indirectly causes growth inhibition (lower photosynthetic efficiency) due to the increase of N-NO 3 and a decrease of O 2 in the water.
Go to article

Authors and Affiliations

Zuzanna Malwina Jaszczuk
1
ORCID: ORCID
Adam Brysiewicz
2
ORCID: ORCID
Agnieszka Kozioł
2
Alicja Auriga
3
ORCID: ORCID
Marian Brestic
4
ORCID: ORCID
Hazem M. Kalaji
2 5
ORCID: ORCID

  1. Warsaw University of Life Sciences SGGW, Faculty of Agriculture and Ecology, Warsaw, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, 3 Hrabska Ave, 05-090, Raszyn, Poland
  3. West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Anatomy and Zoology, Szczecin, Poland
  4. Slovak University in Agriculture in Nitra, Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Nitra, Slovakia
  5. Warsaw University of Life Sciences SGGW, Institute of Biology, Department of Plant Physiology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

By 2050, global crop demand is projected to rise by 60–110%. Crop yields have also been impacted by climate change in some nations, and these impacts are likely to continue. To prevent the influence of climate change on crop output, it is critical to adjust planting times in weather-related open fields to meet food security concerns. Present study was carried out at Experimental Farm of Faculty of Agriculture, Al-Azhar University, Assiut, Egypt, during two successive seasons, 2019 and 2020. It was aimed to study the effect of different sowing times (1st and 15th October, 1st and 15th November), and plant spacings (25, 20, and 15 cm) on growth, fruit yield, and oil production of caraway ( Carum carvi L.) plants. The results showed that sowing caraway plants on 15th October with plant spacing of 25 cm gave the highest dry weight (72.6 g∙plant –1), fresh weight (266.15 g∙plant –1), seed yield (37.43 g∙plant –1), and oil yield (0.659 cm3∙plant –1). The maximum umbels (50.83 number per plant) and essential oil (1.78%) were also recorded in the plants receiving same treatment. On the other hand, plants sown at 15th November with spacing of 15 cm exhibited the minimum values of recorded traits. While the highest value of plant height gave with sowing caraway plants on 15th October with plant spacing of 15 cm (135.35 cm). In conclusion, the plants sowed on October 15th with a maximum plant spacing of 25 cm had the highest values of the evaluated morphological, biochemical, and yield attributes of caraway.
Go to article

Authors and Affiliations

Mostafa Fathi Ibrahim
1
ORCID: ORCID
Muhammad Moaaz Ali
2
ORCID: ORCID
Sobhi F. Lamlom
3
ORCID: ORCID
Hazem M. Kalaji
4 5
ORCID: ORCID
Ahmed F. Yousef
1
ORCID: ORCID

  1. University of Al-Azhar (branch Assiut), College of Agriculture, Department of Horticulture, Assiut 71524, Egypt
  2. Fujian Agricultural and Forestry University, College of Horticulture, Fuzhou, China
  3. Alexandria University, Faculty of Agriculture Saba Basha, Plant Production Department, Alexandria, Egypt
  4. Warsaw University of Life Sciences (SGGW), Institute of Biology, Department of Plant Physiology, Warsaw, Poland
  5. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

Abiotic stressors contribute to growth restriction and developmental disorders in plants. Early detection of the first signs of changes in plant functioning is very important. The objective of this study was to identify chlorophyll fluorescence parameters that change under phosphorus deficiency stress in cucumber. In this work, a trail to study the early changes caused by phosphorus deficiency in cucumber plants by analysing their photosynthetic performance is presented. Chlorophyll- a fluorescence (ChF) parameters were measured every 7 days for a period of 28 days. Measurements were made separately on young and old leaves and on cucumber fruit. Parameters that decreased during the stress were: p2G, PI abs, PI total, REo/CS o, and TRo/CSo. P deficiency decreased total electron carriers per RC ( ECo/RC), yields ( TRo/ABS ( Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS and REo/ABS), fluxes ( REo/RC and REo/CSo) and fractional reduction of PSI end electron acceptors, and damaged all photochemical and non-photochemical redox reactions. Principal component analysis revealed a group of ChF parameters that may indicate early phosphorus deficiency in cucumber plants. Our results are used in the discovery of sensitive bioindicators of phosphorus deficiency in cucumber plants. Most JIP test parameters are linked to mathematical equations, so we recommend using of advanced statistical tools, such as principal component analysis, which should be considered very useful for stress identification. It has also been shown to be more effective in multivariate methods compared to univariate statistical methods was demonstrated.
Go to article

Authors and Affiliations

Leszek Sieczko
1
ORCID: ORCID
Piotr Dąbrowski
2
ORCID: ORCID
Katarzyna Kowalczyk
3
ORCID: ORCID
Janina Gajc-Wolska
3
ORCID: ORCID
Wojciech Borucki
4
ORCID: ORCID
Monika Janaszek-Mańkowska
5
ORCID: ORCID
Waldemar Kowalczyk
6
ORCID: ORCID
Domenica Farci
7
Hazem M. Kalaji
7
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Department of Biometry, Institute of Agriculture, 166 Nowoursynowska St., 02-787 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Department of Environmental Management, Institute of Environmental Engineering, Poland
  3. Warsaw University of Life Sciences – SGGW, Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Poland
  4. Warsaw University of Life Sciences – SGGW, Department of Botany, Institute of Biology, Poland
  5. Warsaw University of Life – SGGW, Department of Fundamentals of Engineering and Power Engineering, Institute of Mechanical Engineering, Poland
  6. The National Institute of Horticultural Research, Skierniewice, Poland
  7. Warsaw University of Life Sciences – SGGW, Department of Plant Physiology, Institute of Biology, Poland

This page uses 'cookies'. Learn more