Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The DiSTFA method (Displacements and Strains using Transformation and Free Adjustment) was presented in Kamiński (2009). The method has been developed for the determination of displacements and strains of engineering objects in unstable reference systems, as well as for examining the stability of reference points. The DiSTFAG (Gross errors) method presented in the paper is the extension of the DiSTFA method making it robust to gross errors. Theoretical considerations have been supplemented with an example of a practical application on a simulated 3D surveying network.
Go to article

Authors and Affiliations

Waldemar Kamiński
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a modification of the classical process for evaluating the statistical significance of displacements in the case of heterogeneous (e.g. linear-angular) control networks established to deformation measurements and analysis. The basis for the proposed solution is the idea of local variance factors. The theoretical discussion was complemented with an example of its application on a simulated horizontal control network. The obtained results showed that the evaluation of the statistical significance of displacements in the case of heterogeneous control networks should be carried out using estimators of local variance factors.
Go to article

Authors and Affiliations

Krzysztof Nowel
Waldemar Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the DiSTFA method (Displacements and Strains using Transformation and Free Adjustment) for the determination of displacement and strains of a surface determined in unstable reference systems. Additionally, covariance matrices were introduced to assess the accuracy of estimation results. The theoretical discussion includes an example of its application in a simulated, three-dimensional geodetic network. The obtained results encourage further, more detailed analysis of real geodetic networks.
Go to article

Authors and Affiliations

Waldemar Kamiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the author proposed a new method for determination of vertical displacements with the use of hydrostatic levelling systems. The traditional method of hydrostatic levelling uses a rule in which a position of reference sensor is stable. This assumption was not adapted in the proposed method. Regarding the issue mentioned above, the reference sensor is treated in the same way as the others sensors that measure the liquid level. As a consequence of this approach there is a possibility of vertical displacement determination of both the reference sensor as well as the remaining controlled sensors. A theoretical considerations were supplemented with the practical examples. The possibility of calculating the vertical displacement of reference sensor is an undoubted advantage of the submitted proposal. This information enables more detailed interpretation of the vertical displacements results obtained from hydrostatic levelling systems. Thus, wider knowledge about maintenance of the entire examined object treated as the rigid body is obtained. The tests that were carried out confirm the theoretical assumptions and encourage to perform further, more precise empirical analyses.
Go to article

Bibliography

[1] P. Bestmann, C. Barreto, C. Charrondiere, “Hydrostatic Levelling System Going Mobile”, in Proceedings 14 the International Workshop on Accelerator Alignment, 3–7 Oct 2016, Grenoble, France. 2016, pp. 1–6. [Online]. Available: https://inspirehep.net/literature/1722424. [Accessed: 2.02.2021].
[2] O. Burdet, “Experience in the Long-Term Monitoring of Bridges”, in 3rd fib International Congress (No.EPFLCONF163103). Washington DC, USA, 2010, pp. 108–113. [Online]. Available: https://infoscience.epfl.ch/record/163103. [Accessed: 2.02.2021].
[3] D. Filipiak–Kowszyk, W. Kaminski, “Determination of vertical displacements in relative monitoring networks”, Archives of Civil Engineering, 2020, vol. 66, no. 1, pp. 309–326, DOI: 10.24425/ace.2020.131790.
[4] H. Friedsam, J. Penicka, J. Error, “Deformation measurements at the vehicle tunnel overpass using a hydrostatic level system”, International Nuclear Information System, Report Number LS-255(ANL), University of North Texas Libraries, UNT Digital Library, 1996, pp. 1–14, DOI: 10.2172/399677.
[5] W. Habel, H.Kohlhoff, J. Knapp, R. Helmerich, “Monitoring System for Long-termevaluation of prestressed railway bridges in the new Lehrter Bahnhof in Berlin”, in Third World Conference on Strucutral Control, 7-12.4.2002, Como, Italy, 2002, pp. 1–6.
[6] W. Kaminski, “The Idea of Monitoring Surface Deformations on Unstable Ground with the Use of GPS Technology”, Bolletino di Geodesia e Scienze Affini, 2008, vol. 1, pp. 33–45.
[7] W. Kaminski, “The Conception of Monitoring the Superficial Deformation Located on theUnstable Foundation with the Usage of GPS Technology”, presented at 13th FIG International Symposium on Deformation Measurements and Analysis, 4th Symposium on Geodesy for Geotechnical and Structural Engineering, Lisbon, May 12–15, 2008.
[8] W. Kaminski, “Properties and analysis of the accuracy of estimation results obtained by the DiSTFA method in monitoring displacements and strains”, Geodesy and Cartography, 2009, vol. 58, no. 2, pp. 37–50.
[9] W. Kaminski, K. Makowska, “The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling”, Geosciences, 2019, vol. 9, no. 10, pp. 1–12, DOI: 10.3390/geosciences9100406.
[10] D. Martin, “Deformation movements observed at the European Synchrotron Radiation Facility”, in Proceedings of The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators, SLAC, Stanford University USA, 2000, pp. 341–357. [Online]. Available: https://www-project. slac.stanford.edu/lc/wkshp/gm2000/proceedings/article25.pdf. [Accessed: 2.02.2021].
[11] E. Meier, A. Geiger, H. Ingensand, H. Licht, P. Limpach, A. Steiger, R. Zwyssig, “Hydrostatic levelling systems: Measuring at the system limits”, Journal of Applied Geodesy, 2010, vol, 4, no. 2, pp. 91–102, DOI: 10.1515/jag.2010.009.
[12] L. Schueremans, K. Van Balen, P. Smars, V. Peeters, D. Van Gemert, “Hydrostatic Levelling System – monitoring of historical structures”, in Structural Analysis of Historical Constructions, P.B. Lourenço, et al., Ed., New Delhi, 2006, pp. 529–536.
[13] L. Schueremans, K. Van Balen, K. Brosens, D. Van Gemert, P. Smars, “Church of Saint-James at Leuven – structural assessment and consolidation measures”, International Journal of Architectural Heritage, 2007, vol. 1, pp. 82–107, DOI: 10.1080/15583050601126137.
[14] B. Szabo, J. Brzeski, J.M. González, “Use of linked monitoring systems for asset protection at finsbury circus during scl tunnelling for crossrail station”, Crossrail Learning Legacy, 2015. [Online]. Available: https://learninglegacy.crossrail.co.uk/documents/use-linked-monitoring-systems-asset-protection-finsbury-circus-scl-tunnelling-crossrail-station-2/. [Accessed: 2.02.2021].
[15] K. Wilde, M. Meronk, M. Groth, M. Miskiewicz, “Structure monitoring by means of hydrostatic levelling” (in Polish), in 27th Scientific Technical Conference on Building failures, 2015, pp. 278–284.
[16] Z.Wisniewski, “The idea of determination of parameters of location and shape of fundamental plates on the basis of free leveling”, in Materials from VI Scientific-Technical Session Current Scientific and Technical Problems of Geodetic Works, Gdansk –Sobieszewo, 6–7 October 1989 (in Polish). Gdansk, 1989.
[17] V.V. Yepin, R.V. Tsvetkov, I.N. Shardakov, A.P. Shestakov, “Estimation of hydrostatic level parameters for measuring vertical displacement fields of structures on a test stand”, AIP Conference Proceedings, 2018, vol. 2053, pp. 1–6, DOI: 10.1063/1.5084542.
[18] X. Zhang, Y. Zhang, L. Zhang, G. Qiu, D. Wei, “Power Transmission Tower Monitoring with Hydrostatic Leveling System: Measurement Refinement and Performance Evaluation”, Hindawi. Journal of Sensors, 2018, article ID 4176314, pp. 1–12, DOI: 10.1155/2018/4176314.
Go to article

Authors and Affiliations

Waldemar Kamiński
1
ORCID: ORCID

  1. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more