Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Salinity is one of the most significant constraints to crop production in dry parts of the world. This research emphasizes the beneficial effects of plant growth-promoting rhizobacterial isolates (PGPR) on the physiological responses of maize and wheat in a saline (NaCl) environment. Soil samples for the study were collected from a maize field in Baddi, Himachal Pradesh, India. Isolated bacterial strains were screened for salt (NaCl) tolerance and plant growth-promoting characters (i.e., indole acetic acid (IAA) production, siderophore production, amino cyclopropane-1-carboxylic acid (ACC) deaminase activity, hydrogen cyanide (HCN) production, and mineral phosphate solubilization). Screened bacterial isolates were further tested in pot experiments to examine their effects on wheat and maize growth. The treatments included five levels of bacterial inoculation (P0: control, P1: ACC deaminase positive + siderophore producer + NaCl tolerant bacteria, P2: mineral phosphate solubilizer + HCN producer + NaCl tolerant bacteria, P3: IAA producer + ACC deaminase positive + NaCl tolerant bacteria, P4: bacterial consortium, P5: Phosphomax commercial biofertilizer) and salt stress at 6 dS/m. Research findings found that exposure to a bacterial consortium led to the highest growth parameter in maize, including shoot length, root length, shoot and root dry weight followed by P2, P3, and P5 treatments at 6 dS/m salinity levels. However, P2 showed the best results for wheat at the same salinity levels, followed by P3, P4 and P5 treatments. P1 treatment did not show a significant result compared to control at 6dS/m salt level for both crops. The maximum proline content in maize and wheat was observed in P4 (23.28 μmol · g−1) and P2 (15.52 μmol · g−1) treatments, respectively, followed by P5 with Phosphomax biofertilizer. Therefore, the study proposed the application of growth-promoting bacterial isolates as efficient biofertilizers in the Baddi region of Himachal Pradesh, India.
Go to article

Authors and Affiliations

Arun Karnwal
1

  1. Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
Download PDF Download RIS Download Bibtex

Abstract

Globally more than 5.2 billion hectares of farming fields are damaged through erosion, salinity and soil deterioration. Many salt stress tolerant bacteria have plant growth promoting (PGP) characteristics that can be used to overcome environmental stresses. Isolation and screening of salt-tolerant endophytes from Salicornia brachiata were achieved through surface sterilization of leaves followed by cultivation on 4% NaCl amended media. Performance of isolates towards indole-3-acetic acid (IAA) production, phosphate solubilization, ACC deaminase activity, ammonia production, siderophore production and stress tolerance were determined. On the basis of the highest plant growth promoting activity, SbCT4 and SbCT7 isolates were tested for plant growth promotion with wheat and maize crops. In the present study, a total of 12 morphologically distinct salt-tolerant endophytic bacteria was cultured. Out of 12 isolates, 42% of salt-tolerant endophytes showed phosphate solubilization, 67% IAA production, 33% ACC-deaminase activity, 92% siderophore production, 41.6% ammonia production and 66% HCN production. A dendrogram, generated on the basis of stress tolerance, showed two clusters, each including five isolates. The bacterial isolates SbCT4 and SbCT7 showed the highest stress tolerance, and stood separately as an independent branch. Bacterial isolates increased wheat shoot and root dry weights by 60–82% and 50–100%, respectively. Similarly, improved results were obtained with maize shoot (27–150%) and root (80–126%) dry weights. For the first time from this plant the bacterial isolates were identified as Paenibacillus polymyxa SbCT4 and Bacillus subtilis SbCT7 based on phenotypic features and 16S rRNA gene sequencing. Paenibacillus polymyxa SbCT4 and B. subtilis SbCT7 significantly improved plant growth compared to non-inoculated trials.

Go to article

Authors and Affiliations

Arun Karnwal

This page uses 'cookies'. Learn more