Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.

Go to article

Authors and Affiliations

Bülent Ekici
Aykut Kentli
Haluk Küçük
Download PDF Download RIS Download Bibtex

Abstract

Severe Plastic Deformation (SPD) techniques have been used by researchers for last three decades in order to obtain Ultra-Fine Grained (UFG) materials. Equal Channel Angular Pressing (ECAP) is preferred more than other SPD techniques thanks to its high performance and practicability. Hexa Equal Channel Angular Pressing (Hexa-ECAP) – modified ECAP technique which enables to apply ECAP routes for cylindrical samples properly – was preferred in this study. Within the objective of this study, the effects of coefficient and ram velocity on the mean effective strain and strain inhomogeneity of Hexa-ECAP processed Al7075 aluminium alloy were investigated. Also, the effects of ram velocity and friction coefficient on hardness homogeneity were investigated benefitting from the similarity between the hardness distribution and the strain distribution.
Go to article

Authors and Affiliations

Serkan Öğüt
1
ORCID: ORCID
Hasan Kaya
2
Aykut Kentli
1
Kerim Özbeyaz
1
Mehmet Şahbaz
3
Mehmet Uçar
4

  1. Marmara University, Faculty of Engineering, Mechanical Engineering Department, Istanbul – Turkey
  2. Kocaeli University, Asım Kocabıyık Vocational School, Machine and Metal Technology Department, Kocaeli – Turkey
  3. Karamanoğlu Mehmetbey University, Faculty of Engineering, Mechanical Engineering Department, Karaman, Turkey
  4. Kocaeli University, Faculty of Technology, Automotive Engineering Department, Kocaeli – Turkey

This page uses 'cookies'. Learn more