Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an advanced Internet of Things (IoT) system for measuring, monitoring, and recording some power quality (PQ) parameters. The proposed system is designed and developed for both hardware and software. For the hardware unit, three PZEM-004T modules with non-invasive current transformer (CT) sensors are used to measure the PQ parameters and an Arduino WeMos D1 R1 ESP8266 microcontroller is used to receive data from the sensors and send this data to the server via the internet. For the software unit, an algorithm using Matlab software is developed to send measurement data to the ThingSpeak cloud. The proposed system can monitor and analyse the PQ parameters including frequency, root mean square (RMS) voltage, RMS current, active power, and the power factor of a low-voltage load in real-time. These PQ parameters can be stored on the ThingSpeak cloud during the monitoring period; hence the standard deviation in statistics of the voltage and frequency is applied to analyse and evaluate PQ at the monitoring point. The experimental tests are carried out on low-voltage networks 380/220 V. The obtained results show that the proposed system can be usefully applied for monitoring and analysing chosen PQ parameters in micro-grid solutions.
Go to article

Bibliography

[1] Luo A., Xu Q., Ma F., Chen., Overview of power quality analysis and control technology for the smart grid, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 1, pp. 1–9 (2016).
[2] Szulborski M., Kolimas L., Łapczynski S., Szczęśniak P., Single phase UPS systems loaded with nonlinear circuits: analysis of topology in the context of electric power quality, Archives of Electrical Engineering, vol. 68, no. 4, pp. 787–802 (2019).
[3] Wenge C., Guo H., Roehrig C., Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system, Archives of Electrical Engineering, vol. 66, no. 4, pp. 801–814 (2017).
[4] Mendes T.M., Faria E.R.S., Perle L.A.V., Ribeiro E.G., Ferreira D.D., Barbosa B.H.G., Duque C.A., Detection of Power Quality Disturbance using a Multidimensional Approach in an Embedded System, IEEE Latin America Transactions, vol. 17, no. 7, pp. 1102–1108 (2019).
[5] Khoa N.M., Dai L.V., Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods, Energies, vol. 13, no. 14, 3623 (2020).
[6] Bagdadee A.H., Zhang L., A Review of the Smart Grid Concept for Electrical Power System, International Journal of Energy Optimization and Engineering, vol. 8, no. 4 (2019).
[7] Alavi S.A., Rahimian A., Mehran K., Ardestani J.M., An IoT-based data collection platform for situational awareness-centric microgrids, in 2018 IEEE Canadian conference on electrical and computer engineering, Quebec City, Canada, pp. 13–16 (2018).
[8] Bagdadee A.H., Zhang L., Remus Md.S.H., A Brief Review of the IoT-Based Energy Management System in the Smart Industry, Advances in Intelligent Systems and Computing, Springer (2020).
[9] Bagdadee A.H., Hoque Md.Z., Zhang L., IoT Based Wireless Sensor Network for Power Quality Control in Smart Grid, Procedia Computer Science, Procedia Computer Science, Elsevier, vol. 167, pp. 1148–1160 (2020).
[10] Henschke M.,Wei X., Zhang X., Data Visualization forWireless Sensor Networks Using Things Board, in 29th Wireless and Optical Communications Conference, Newark, NJ, USA (2020).
[11] Benzi F., Anglani N., Bassi E., Frosini L., Electricity Smart Meters Interfacing the Households, IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4487–4494 (2011).
[12] Chooruang K., Meekul K., Design of an IoT Energy Monitoring System, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand (2018).
[13] Luan H., Leng J., Design of energy monitoring system based on IoT, in 2016 Chinese Control and Decision Conference, Yinchuan, China (2016).
[14] Ku T.Y., Park W.K., Choi H., IoT Energy Management Platform for Micro-grid, in 2017 IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada (2017).
[15] Marinakis V., Doukas H., An Advanced IoT-based System for Intelligent Energy Management in Buildings, Sensors, vol. 18, no. 1 (2018), DOI: 10.3390/s18020610.
[16] Kulkarni N., Lalitha S.V.N.L., Deokar S.A., Real time control and monitoring of grid power systems using cloud computing, International Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 2088–8708 (2019).
[17] Priyadharshini S.G., Subramani C., Preetha Roselyn J., An IoT based smart metering development for energy management system, International Journal of Electrical and Computer Engineering, vol. 9, no. 4, pp. 3041–3050 (2019).
[18] Khoa N.M., Dai L.V., Tung D.D., Toan N.A., An IoT-Based Power Control and Monitoring System for Low-Voltage Distribution Networks, TNU Journal of Science and Technology, vol. 225, no. 13, pp. 51–58 (2020).
[19] Yang T.Y., Yang C.S., Sung T.W., An Intelligent Energy Management Scheme with Monitoring and Scheduling Approach for IoT Applications in Smart Home, in 2015 Third International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, pp. 18–20 (2015).
[20] Dai L.V., Khoa N.M., Quyen L.C., An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration, Complexity, vol. 2020, p. 8037837 (2020).
[21] Mnati M.J., Bossche A.V., Chisab R.F., Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application, Sensors, vol. 872, no. 16 (2017), DOI: 10.3390/s17040872.
[22] Han D.M., Lim J.H., Design and implementation of smart home energy management systems based on ZigBee, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1417–1425 (2010).
[23] Velazquez L.M., Troncoso R.J.R., Ruiz G.H., Sotelo D.M., Rios R.A.O., Smart sensor network for power quality monitoring in electrical installations, Measurement, vol. 103, pp. 133–142 (2017).
[24] Nallagownden P., Ramasamy H., Development of real-time industrial energy monitoring system with PQ analysis based on IoT, in 4th IET Clean Energy and Technology Conference, Kuala Lumpur, Malaysia (2016).
[25] Shamshiri M., Gan C.K., Baharin K.A., Azman M.A.M., IoT-based electricity energy monitoring system at Universiti Teknikal Malaysia Melaka, Bulletin of Electrical Engineering and Informatics, vol. 8, no. 2, pp. 683–689 (2019).
[26] Mroczka J., Szmajda M., Górecki K., Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform – Tools for Power Quality Monitoring, Metrology and Measurement Systems, vol. 17, no. 3, pp. 383–396 (2010).
[27] Ardeleanu A.S., Ramos P.M., Real Time PC Implementation of Power Quality Monitoring System Based on Multiharmonic Least-Squares Fitting, Metrology and Measurement Systems, vol. 18, no. 4, pp. 543–554 (2011).
[28] Khan M.A., Hayes B., PTP-based time synchronisation of smart meter data for state estimation in power distribution networks, IET Smart Grid (2020).
[29] Khwanrit R., Kittipiyakuly S., Kudtongngamz J., Fujita H., Accuracy Comparison of Present Lowcost Current Sensors for Building Energy Monitoring, 2018 International Conference on Embedded Systems and Intelligent Technology and International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand (2018).
[30] Olehs, Arduino communication library for peacefair pzem-004t energy monitor, https://github.com/ olehs/PZEM004T, accessed 2016.
[31] Legarreta A.E., Figueroa J.H., Bortolin J.A., An IEC 61000-4-30 class a – Power quality monitor: Development and performance analysis, in 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal (2011).
[32] Markiewicz H., Klajn A., Voltage Disturbances: Standard EN 50160 – Voltage Characteristics in Public Distribution Systems, IEE Endorsed Provider (2004). [33] Hassani H., Ghodsi M., Howell G., A note on standard deviation and standard error, International Journal of the IMA: Teaching Mathematics and Its Applications, vol. 29, no. 2, pp. 108–112 (2010).
Go to article

Authors and Affiliations

Ngo Minh Khoa
1
ORCID: ORCID
Le Van Dai
2
Doan Duc Tung
1
ORCID: ORCID
Nguyen An Toan
1
ORCID: ORCID

  1. Faculty of Engineering and Technology, Quy Nhon University, Vietnam
  2. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

For voltage-source-converter based high-voltage-direct-current (VSC-HVDC) transmission systems, fault ride-through (FRT) capability is a very important grid requirement in order to enhance its operational availability under an alternating current (AC) grid fault condition. Voltage sags during a short-circuit fault in power transmission lines can lead to fluctuations in the direct current (DC) link voltage of converter systems, and may induce reversed power flow and even trip a VSC-HVDC transmission system. A practical method is developed in this paper for investigating FRT capability of VSC-HVDC transmission system characteristics during a voltage sag event using experimental results from Smart Grid Laboratory. Symmetrical and asymmetrical voltage sag events with different remaining voltages are applied to an AC grid that lasts with a variable duration. The experimental waveforms of the two converter systems are recorded and analyzed in order to evaluate the FRT capability of VSC-HVDC transmission systems.
Go to article

Bibliography

[1] Hingorani N., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, Willey (2000).
[2] Zhang X.P., Rehtanz C., Pal B., Flexible AC Transmission Systems: Modelling and Control, Springer- Verlag (2006).
[3] Yazdani A., Iravani R., Voltage-sourced converters in power systems: Modeling, Control, and Applications, IEEE Press, Wiley (2010).
[4] Flourentzou N., Agelidis V.G., Demetriades G.D., VSC-Based HVDC Power Transmission Systems: An Overview, IEEE Transactions on Power Electronics, vol. 24, pp. 592–602 (2009).
[5] Sessa S.D., Chiarelli A., Benato R., Availability Analysis of HVDC-VSC Systems: A Review, Energies, vol. 12, no. 14, pp. 1–22 (2019), DOI: 10.3390/en12142703.
[6] Alassi A., Bañales S., Ellabban O., Adam G., MacIver C., HVDC Transmission: Technology Review, Market Trends and Future Outlook, Renewable and Sustainable Energy Reviews, vol. 112, pp. 530–554 (2019), DOI: 10.1016/j.rser.2019.04.062.
[7] Patil P.R., Bhole A.A., A review on enhancing fault ride-through capability of distributed generation in a microgrid, In Proceedings of 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), April 21–22, Vellore, India (2017), DOI: 10.1109/IPACT.2017.8245189.
[8] Yaramasu V., Wu B., Sen P.C., Kouro S., Narimani M., High-power wind energy conversion systems: State-of-the-art and emerging technologies, Proceedings of the IEEE, vol. 103, pp. 740–788 (2015).
[9] Feltes C.,Wrede H.,Koch F.W., Erlich I., Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission, IEEE Transactions on Power Systems, vol. 24, pp. 1537–1546 (2009).
[10] Sang Y., Yang B., Shu H., An N., Zeng F., Yu T., Fault Ride-Through Capability Enhancement of Type-4 WECS in OffshoreWind Farm via Nonlinear Adaptive Control of VSC-HVDC, Processes, vol. 7, no. 540 (2019), DOI: 10.3390/pr7080540.
[11] Vrionis T.D., Koutiva X.I., Vovos N.A., Giannakopoulos G.B., Control of an HVDC Link Connecting a Wind Farm to the Grid for Fault Ride-Through Enhancement, IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 2039–2047 (2007).
[12] Ramtharan G., Arulampalam A., Ekanayake J.B., Hughes F., Jenkins N., Fault ride through of fully rated converter wind turbines with AC and DC transmission systems, IET Renewable Power Generation, vol. 3, iss. 4, pp. 426–438 (2009).
[13] Sun W., Torres-Olguina R.E., Anaya-Laraa O., Investigation on Fault-ride through Methods for VSCHVDC Connected Offshore Wind Farms, Energy Procedia, vol. 94, pp. 29–36 (2016).
[14] Haleem N.M., Rajapakse A.D., Gole A.M., Fernando I.T., Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, iss. 1, pp. 241–250 (2019).
[15] Li Y., Liu C., Tian X., Wang Z., Study on fault ride-through control of islanded wind farm connected to VSC-HVDC grid based on the VSC converter AC-side bus forced short circuit, The Journal of Engineering, vol. 2019, no. 16, pp. 3325–3328 (2019).
[16] Moawwad A., El Moursi M.S., Xiao W., Advanced fault ride-through management scheme for VSC-HVDC connecting offshore wind farms, IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4923–4934 (2016).
[17] Zhou Z., Chen Z., Wang X., Du D., Yang G., Wang Y., Hao L., AC fault ride through control strategy on inverter side of hybrid HVDC transmission systems, Journal of Modern Power Systems and Clean Energy, vol. 7, iss. 5, pp. 1129–1141 (2019).
[18] Feldman R., Farr E., Watson A.J., Clare J.C., Wheeler P.W., Trainer D.R., Crookes R.W., DC fault ride-through capability and STATCOM operation of a HVDC hybrid voltage source converter, IET Generation, Transmission and Distribution, vol. 8, iss. 1, pp. 114–120 (2014).
[19] Oguma K., Akagi H., Low-Voltage-Ride-Through Performance of an HVDC Transmission System Using Two Modular Multilevel Double-Star Chopper-Cells Converters, Electrical Engineering in Japan, vol. 200, pp. 33–44 (2017), DOI: 10.1109/TPEL.2016.2615048.
[20] Yang B., Sang Y.Y., Shi K., Yao W., Jiang L., Yu T., Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems, Control Engineering Practice, vol. 56, pp. 13–26 (2016).
[21] Yang B., Jiang L., Yu T., Shua H.C., Zhang C.K., Yao W., Wu Q.H., Passive control design for multiterminal VSC-HVDC systems via energy shaping, International Journal of Electrical Power and Energy Systems, vol. 98, pp. 496–508 (2018).
[22] Dumnic B., Popadic B., Milicevic D., Vukajlovic N., Delimar M., Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems, Energies, vol. 12, no. 7 (2019), DOI: 10.3390/en12071362.
[23] Latorre H.F., Ghandhari M., Soder L., Active and Reactive Power Control of VSC-HVDC, Electrical Power System Research, vol. 78, pp. 1756–1763 (2008).
[24] Li C., Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020).
[25] Yang B., Yu T., Zhang X., Huang L., Shu H., Jiang L., Interactive teaching-learning optimizer for parameter tuning of VSC-HVDC systems with offshore wind farm integration, IET Generation, Transmission and Distribution, vol. 12, no. 3, pp. 678–687 (2018).
Go to article

Authors and Affiliations

Ngo Minh Khoa
1
ORCID: ORCID
Nguyen An Toan
1
ORCID: ORCID
Doan Duc Tung
1
ORCID: ORCID

  1. Faculty of Engineering and Technology, Quynhon University, Vietnam

This page uses 'cookies'. Learn more