Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present the procedure test for calibration and validation of the numerical model for X22CrMoV12-1 steel multilayer welding. On the real multilayer weld was described how to arrange the whole experiment in order to obtain not only relevant input data but also verification data. Tests on a specially prepared specimen, welded with 8 beads in 4 layers, allows to determine the actual geometry of the single welded beads, registration of welding thermal cycles and the hardness distribution in successively deposited beads together with determining the heat influence of subsequent layers. The results of the real welding tests were compared with the results obtained from the numerical simulations and extended by the calculated stresses and distortions distributions of the tested specimen. A new, improved hardness prediction algorithm for high-alloy martensitic and bainitic steels was also proposed.

Go to article

Authors and Affiliations

T. Kik
ORCID: ORCID
J. Moravec
I. Novakova
Download PDF Download RIS Download Bibtex

Abstract

In this work, research on influence of multiwalled carbon nanotubes (MWCNTs), produced in Catalic Chemical Carbon Vapor Deposition, NANOCYLTM NC7000CNTs on a structure and properties of AISI 301 steel remelted by TIG arc. In the assessment of influence a type of carbon on properties and structure of austenitic steel, as a carbon filler was use also carburizer. In the specimens (AISI 301 plates) with dimensions 155×60×7 [mm] were drilled holes with 1.3 mm diameter and placed 0.5 mm under specimen surface. Next, to the drilled holes was implemented CNTs, carburizer and mixture of these both powders. Prepared specimens were remelted by TIG method on the CASTOTIG 2200 power source with 2.4 mm tungsten thoriated electrode with parameters sets for obtain 3.0 mm penetration depth. Remelted specimens were cut into the half of the welds distance and prepared for metallographic examinations. Cross sections of the specimens were tested on classical metallography microscopes, hardness tests, SEM analyses (on JEOL 5800 LV SEM EDX equipment) and phase identification by X-ray phase analysis on Philips APD X’Pert PW 3020 diffractometer. Hardness analysis indicates about 25% increase of hardness in the remelted area when the CTNs are used. In the specimens with carburizer there is no significant changes. SEM analyses of remelted areas on AISI 301 specimens modificated with CNTs, indicates that dark areas, initially interpret as one of the phase (based on optical microscope) is finally densely packed bladders with dimensions from 50 nm up to a few µm. These bladders are not present in the specimens with carburizer filler. High resolution scanning microscopy allow to observe in the this area protruding, longitudinal particles with 100-300 nm length. For identification of this phase, X-ray analysis was done. But very small dimensions of used CNTs (diameters about 9,5 nm), random orientation and small weight amount can make difficult or impossible to CNTs detection during XRD tests. It means that it is not possible to clearly determine nature of particles filling the cavities, it is only possible to suppose that they are CNTs beams with nanoparticles comes from their disintegration. Results of the researches indicates, that fill in the weld pool with different form of carbon (CNTs and carburizer) it is possible to achieve remelted beads with different structure and hardness distribution. It confirms validity of the research continuation with CNTs as a modifier of steels and also other metals and theirs alloys.
Go to article

Authors and Affiliations

J. Górka
1
ORCID: ORCID
T. Kik
1
ORCID: ORCID
M. Burda
2
ORCID: ORCID

  1. Silesian University of Technology, Mechanical Engineering Faculty, Department of Welding, 18a Konarskiego Str., 44-100 Gliwice, Poland
  2. Cametics Ltd, Nanotechnology, Cambridge, Cambridgeshire, United Kingdom

This page uses 'cookies'. Learn more