Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, as a purpose to apply the supersaturated solid-solutionized Al-9Mg alloy to the structural sheet parts of automotive, tensile tests were conducted under the various conditions and a constitutive equation was derived from the tensile test results. Al-9Mg alloy was produced using a special Mg master alloy containing Al2Ca during the casting process and extruded into the sheet. In order to study the deformation behavior of Al-9Mg alloy in warm temperature forming environments, tensile tests were conducted under the temperature of 373 K-573 K and the strain rate of 0.001/s~0.1/s. In addition, by using the raw data obtained from tensile tests, a constitutive equation of the Al-9Mg alloy was derived for predicting the optimized condition of the hot stamping process. Al-9Mg alloy showed uncommon deformation behavior at the 373 K and 473 K temperature conditions. The calculated curves from the constitutive equation well-matched with the measured curves from the experiments particularly under the low temperature and high strain rate conditions.
Go to article

Bibliography

[1] P.F. Bariani, S. Bruschi, A, Ghiotti, F. Michieletto, CIRP Annals 62, 251-254 (2013). DOI: https://doi.org/10.1016/j.cirp.2013.03.050
[2] B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, J.-C. Lee, Materials Science and Engineering: A 657, 115-122 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.089
[3] D. Li, A. Ghosh, Materials Science and Engineering: A 352, 279- 286 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00915-2
[4] N.-S. Kim, K.-H. Choi, S.-Y. Yang, S.-H. Ha, Y.-O. Yoon, B.-H. Kim, H.-K. Lim, S.K. Kim, S.-K. Hyun, Metals 11, 288 (2021). DOI: https://doi.org/10.3390/met11020288
[5] H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, Transactions of Nonferrous Metals Society of China 22, 1-7 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61131-X
[6] D. Li, A.K. Ghosh, Journal of Materials Processing Technology 145, 281-293 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.003
[7] R .C. Picu, Acta Materialia 52, 3447-3458 (2004). DOI: https://doi.org/10.1016/j.actamat.2004.03.042
[8] C.-H. Cho, H.-W. Son, J.-C. Lee, K.-T. Son, J.-W. Lee, S.-K. Hyun, Materials Science and Engineering: A 779, 139151 (2020). DOI: https://doi.org/10.1016/j.msea.2020.139151
[9] S.-Y. Yang, D.-B. Lee, K.-H. Choi, N.-S. Kim, S.-H. Ha, B.- H. Kim, Y.-O. Yoon, H.-K. Lim, S.K. Kim, Y.-J. Kim, Metals 11, 410 (2021). DOI: https://doi.org/10.3390/met11030410
[10] Q. Dai, Y. Deng, H. Jiang, J. Tang, J. Chen, Materials Science and Engineering: A, 766, 138325 (2019). DOI: https://doi.org/10.1016/j.msea.2019.138325
[11] L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, L. Suo, J. of Materi Eng and Perform 23, 1107-1113 (2014). DOI: https://doi.org/10.1007/s11665-013-0834-2
[12] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Journal of Materials Processing Technology 208, 29-34 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095
[13] L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Materials & Design 34, 179-184 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.07.060
[14] K.C. Chan, G.Q. Tong, Materials Letters 51, 389-395 (2001).
[15] https://www.sentesoftware.co.uk/site-media/flow-stress-curve
Go to article

Authors and Affiliations

Seung Y. Yang
1 2
ORCID: ORCID
Bong H. Kim
1
ORCID: ORCID
Da B. Lee
1
Kweon H. Choi
1
ORCID: ORCID
Nam S. Kim
1
ORCID: ORCID
Seong H. Ha
1
Young O. Yoon
1
Hyun K. Lim
1
ORCID: ORCID
Shae Kim
1
Young J. Kim
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Process and Materials R&D Group, KITECH, 156 Gaetbeol Rd., Yeonsu-gu, Incheon, 21999, Korea
  2. Sungkyunkwan University, Advanced Materials Science & Engineering, SKKU, Suwon, Korea
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to investigate the microstructural evolution and mechanical properties of hot-deformed AlMg4 alloys with Mn, Fe, and Si as the main impurities. For this purpose, solidification behavior and microstructural evolution during hot-rolling and heat-treatment processes are investigated by using theoretical calculations and experimental characterization. The crystallization and morphological transformation of intermetallic Al3Fe, Al6Mn, and Mg2Si phases are revealed and discussed in terms of the variation in chemical composition. Following a homogenization heat-treatment, the effect of heat treatment on the intermetallic compounds is also investigated after hot-rolling. It was revealed that the Mg2Si phase can be broken into small particles and spherodized more easily than the Al3Fe intermetallic phase during the hot-rolling process. For the Mn containing alloys, both yield and ultimate tensile strength of the hot-rolled alloys increased from 270 to 296 MPa while elongation decreased from 17 to 13%, which can be attributed to Mn-containing intermetallic as well as dispersoid.

Go to article

Authors and Affiliations

Da B. Lee
Bong H. Kim
ORCID: ORCID
Kweon H. Choi
ORCID: ORCID
Seung Y. Yang
ORCID: ORCID
Nam S. Kim
ORCID: ORCID
Seong H. Ha
Young O. Yoon
Hyun K. Lim
ORCID: ORCID
Shae Kim
Soong K. Hyun

This page uses 'cookies'. Learn more