Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm,2 respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.

Go to article

Authors and Affiliations

Dong-Yeol Wi
Young-Kyun Kim
Tae-Sik Yoon
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

The lap joint welding of Al 3003 alloy by stationary shoulder friction stir welding (SSFSW) was performed under the conditions of tool rotation and welding speed, and it was confirmed that the welding was performed under all conditions. The tunnel defects and pores were formed in the weld zone at the lowest tool rotation and welding speed, and it is increased, the weld surface has been improved. At the same tool rotation speed at the welding speed is increased, the grain size was refined in the stir zone (SZ) and thus the hardness increased by about 14% compared to the base metal. The tensile shear strength is measured to be 10 kN or more under most conditions, and in the 4000 rpm with high heat input, the shear tensile strength was measured relatively lower than other conditions due to excessive heat input of the material.
Go to article

Authors and Affiliations

Woo-Chul Jung
1
ORCID: ORCID
Joo-Heon Park
1
Sang-Min Yoon
1
Young Kyun Kim
1

  1. Advanced Material & Processing Center, Institute for Advanced Engineering, 175-28 Goan-ro, 51 beon-gil, Yongin-si, Gyeonggi, 17180, Korea
Download PDF Download RIS Download Bibtex

Abstract

This study fabricated a WC/T-800 cermet coating layer with Co-Mo-Cr (T-800) powder and WC powder using laser cladding, and analyzed its microstructure, hardness and wear properties. For comparison, casted bulk T-800 was used. Laser cladded ­WC/T-800 cermet coating layer showed circular WC phases in the Co matrix, and dendritic laves phases. The average laves phase size in the cermet coating layer and bulk T-800 measured as 7.9 µm and 60.6 µm, respectively, indicating that the cermet coating layer had a relatively finer laves phase. Upon conducting a wear test, the cermet coating layer added with WC showed better wear resistance. In the case of laser cladded WC/T-800 cermet coating layer, abrasion wear was observed; on the contrary, the bulk T-800 showed pulled out laves phases. Based on the above findings, the WC/T-800 cermet coating layer using laser cladding and the relationship between its microstructure and wear behavior were discussed.
Go to article

Bibliography

[1] W. Xu, R. Liu, P.C. Patnaik, M.X. Yao, X.J. Wu, Mater. Sci. Eng. A. 452-453, 427-436 (2007).
[2] T. Sahraoui, H.I. Feraoun, N. Fenineche, G. Montavon, H. Aourag, C. Coddet, Mater. Lett. 58 (19), 2433-2436 (2004).
[3] J. Przybylowicz, J. Kusinski, Surf. Coat. Tech. 125 (1-3), 13-18 (2000).
[4] X.H. Zhang, C. Zhang, Y.D. Zhang, S. Salam, H.F. Wang, Z.G. Yang, Corros. Sci. 88, 405-415 (2014).
[5] M .X. Yao, J.B.C. Wu, R. Liu, Mater. Sci. Eng. A. 407 (1-2), 299- 305 (2005).
[6] H.J. Kim, B.H. Yoon, C.H. Lee, Wear 254 (5-6), 408-414 (2003).
[7] A. Scheid, A.S.C. M. d’Oliveira, Mater. Sci. Tech. 26 (12), 1487- 1493 (2010).
[8] T.H. Kang, K.S. Kim, S.H. Park, K.A. Lee, Korean J. Met. Mater. 56 (6), 423-429 (2005).
[9] J. Nurminen, J. Näkki, P. Vuoristo, Int. J. Refract. Met. H. 27 (2), 472-478 (2009).
[10] L. Sexton, S. Lavin, G. Byrne, A. Kennedy, J. Mater. Process. Tech. 122 (1), 63-68 (2002).
[11] L. Song, J. Mazumder, IEEE Trans. Control Syst. Technol. 19, 1349-1356 (2011).
[12] C. Navas, M. Cadenas, J.M. Cuetos, J. De. Damborenea, Wear 206 (7-8), 838-846 (2006).
[13] M .J. Tobar, J.M. Amado, C. Álvarez, A. García, A. Varela, A. Yáñez, Surf. Coat. Tech. 202 (11), 2297-2301 (2008).
[14] G . Muvvala, D. Karmakar, A.K. Nath, J. Allpy. Compd. 740, 545-558 (2018).
Go to article

Authors and Affiliations

Kyoung-Wook Kim
1
Young-Kyun Kim
1
ORCID: ORCID
Sun-Hong Park
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Dept. Mater. Sci. Eng., Incheon 22212, Republic of Korea
  2. POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion ­(L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Go to article

Authors and Affiliations

Jung-Uk Lee
1
Young-Kyun Kim
2
ORCID: ORCID
Seong-Moon Seo
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Korea Institute of Materials Science, Changwon 51508, Republic of Korea

This page uses 'cookies'. Learn more