Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional

flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy). The experimental part of the thesis presents the results of

performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1) or aluminium bronze (CuAl10Fe). TIG

electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler

metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure

recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity

to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual

inspection, mechanic and metallographic testing.

Go to article

Authors and Affiliations

M. Mičian
R. Koňár
Download PDF Download RIS Download Bibtex

Abstract

Internal casting defects that are detected by radiography may also be detected by ultrasonic method. Ultrasonic testing allows investigation of the cross-sectional area of a casting, it is considered to be a volumetric inspection method. The high frequency acoustic energy travels through the casting until it hits the opposite surface or an interface or defect. The interface or defect reflects portions of the energy, which are collected in a receiving unit and displayed for the analyst to view. The pattern of the energy deflection can indicate internal defect. Ultrasonic casting testing is very complicated in practice. The complications are mainly due to the coarse-grain structure of the casting that causes a high ultrasound attenuation. High attenuation then makes it impossible to test the entire volume of material. This article is focused on measurement of attenuation, the effect of probe frequency on attenuation and testing results.

Go to article

Authors and Affiliations

R. Koňár
M. Mičian
Download PDF Download RIS Download Bibtex

Abstract

The article deals with ultrasonic testing possibilities of the copper alloy centrifugal casts. It focused on the problems that arise when testing

of castings is made of non-ferrous materials. Most common types of casting defects is dedicated in theoretical introduction of article.

Ultrasonic testing technique by conventional ultrasound system is described in the theoretical part too. Practical ultrasonic testing of

centrifugal copper alloy cast - brass is in experimental part. The experimental sample was part of centrifugally cast brass ring with

dimensions of Ø1200x34 mm. The influence of microstructure on ultrasonic attenuation and limitations in testing due to attenuation is

describes in experimental part. Conventional direct single element contact ultrasound probe with frequencies of 5 MHz, 3.5 MHz and 2

MHz were used for all experimental measurements. The results of experimental part of article are recommendations for selecting

equipment and accessories for casting testing made of non-ferrous metals.

Go to article

Authors and Affiliations

R. Konar
M. Mician
Download PDF Download RIS Download Bibtex

Abstract

Use of welding technology for the repair of steel castings is particularly common in two areas. These include weld surfacing of protrusions that remained incomplete after casting, or filling the surface defects (cavities). These defects are more common for steel casting than for graphite cast iron, due to the lower fluidity of steel. This article describes a suitable technological process of repairing the defects on the casting using the welding technology. A specimen produced for this purpose was prepared by carving a groove into a cast steel plate 20 GL, which was then filled with a weld metal using MAG (135) technology. The following evaluation of the basic characteristics of the repaired site point to the suitability of the selected technological parameters of the repair procedure. Metallographic evaluation was carried out, further evaluation of mechanical properties by tensile test, bend test and Vickers hardness test. The proposed methodology for the evaluation repair of foundry defects in steel castings also meets the requirements for the approval of welding procedures in accordance with the relevant valid legislation.
Go to article

Authors and Affiliations

M. Mičian
J. Winczek
R. Koňár
I. Hlavatý
M. Gucwa
Download PDF Download RIS Download Bibtex

Abstract

The goal of this article is non-destructive ultrasonic testing of internal castings defects. Our task was to cast several samples with defects like porosity and cavities (where belongs mostly shrinkages) and then pass these samples under ultrasonic testing. The characteristics of ultrasonic control of castings are presented in the theoretical part of this article. Ultrasonic control is a volume non-destructive method that can detect internal defects in controlled materials without damaging the construction. It is one of the most widely used methods of volume non-destructive testing. For experimental control were made several cylindrical samples from ferritic grey and ductile cast iron. Because of the form and dispersion of graphite of grey cast iron it was not possible to make ultrasonic records on this casting with probe we used, so we worked only with ductile cast iron. Ultrasonic records of casting control are shown and described in the experimental part. The evaluation of the measurement results and the reliability of the ultrasonic method in castings control is listed at the end of this article.

Go to article

Authors and Affiliations

M. Boháčik
M. Mičian
R. Koňár
L. Trško
J. Winczek
Download PDF Download RIS Download Bibtex

Abstract

Materials based on cast irons are often used for protection against wear. One of the methods of creating protective surface with cast iron structures is hardfacing. The application of hardfacing with self shielded flux cored wire with high carbon content is one of the economical ways often used to protect machinery parts exposed to both abrasion and erosion. The wear resistance of hardfacings depends on their chemical composition, structure obtained after hardfacing, parameters of depositing process and specific conditions of wear. As the base material in the investigation the steel grade S235JR was used. The wear behavior mechanism of hardfacings made with one type of self shielded flux cored wire and different process parameters were evaluated in this paper. Structures obtained in deposition process were different in hardness, amount of carbides and resistance to wear with two investigated impingement angles. The erosion tests showed that impingement angle 30° gives lower erosion rate than angle 60°.

Go to article

Authors and Affiliations

J. Winczek
M. Gucwa
M. Mičian
R. Koňár
S. Parzych
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the article is to identify artificially created defects like lack of fusion and incomplete penetration in butt weld joint using non-destructive volumetric methods. These defects are the most serious defects in welds of steel constructions from the safety point of view. For identification, an ultrasonic phased array technique and a conventional X-ray using digital imaging were used. The theoretical part of the article describes the current state of the given issue and provides basic theoretical knowledge about ultrasonic and X-ray welding tests. In the experimental part, the procedure and results of testing butt weld joint are described by both non-destructive methods. The butt weld joint was made from steel S420MC. Each indication obtained by the ultrasonic and x-ray technique is supplemented by the macrostructure of the weld taken from the indication position. The results of the experimental work mentioned in the article point to the possibility and reliability of the identification of melting defects by selected nondestructive methods in terms of their character and orientation.

Go to article

Authors and Affiliations

R. Koňár
M. Mičian
M. Boháčik
M. Gucwa
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibility of the renovation of permanent steel molds for casting using electric arc welding technology. When casting liquid metal into permanent steel molds, there is chemical-thermo-mechanical wear of the surface of the mold cavity and the inlet system, which causes a deterioration of the surface quality and dimensional accuracy of the casting. For this reason, it is necessary to renovate the steel mold after a certain casting interval - mold life. In this case, the technology of manual electric arc welding with a coated electrode was used for the renovation. The welding renovation aims to increase the service life of the mold using carbide hardfacing welds, which after welding achieve high mechanical properties of the renovated mold parts. Two types of hardfacing coated electrodes were used for welding, namely the OK Weartrode 55HD electrode and the OK Weartrode 50T electrode. Macroscopic analysis, tribological tests as well as the measurement of the hardness of the welded layers were performed to evaluate the quality and the friction coefficients of the additional materials used. The properties of hardfacing welds were compared with the properties of the basic material of the high-alloy steel mold. The main advantage is in addition to increasing the durability and longevity of the mold, also reducing the cost of mold renovation compared to other renovation technologies.
Go to article

Bibliography

[1] Jankura, D., (2013). Wear evaluation of renovation layers based on hardfacing (Hodnotenie opotrebenia renovačných vrstiev na báze tvrdonávarov). Transfer Inovácií. 26, 126-129.
[2] Moravec, J. et.al. (2018). Experimental casting of forging ingots from model maeriál. In 22nd Slovak_Polish Scientific Conference on Machine Modelling and Simulations, 5-8 September 2017 (article No. 05017). Sklene Teplice, Slovakia: Univerzity of Zilina.
[3] Moravec, J. et.al. (2001). F orming machines (Tvárniace stroje). Žilina: Edis, 2011, ISBN: 978-80-554-0446-2. (in Slovak).
[4] Ptáček, Luďek et. al. (2002). Materials science (Nauka o material II). Brno: Akademické nakaldatelství CERM, s.r.o, ISBN: 80-7204-248-3.
[5] Jhvar, S.; Paul, C.P.; Jain, N.K. (2013). Causes of failure and repairing optinos for diels and molds. A review. Engineering Failure Analysis 34, 519-535.
[6] Mician, M. et al. (2018). The Repair of Foundry Defects in Steel Castings Using Welding Technology. Archives of Foundry Engineering. 18(2), 177-180. DOI: 10.24425/122524.
[7] Chander, S., Chawla, V. (2017). Failure of forging dies an update prespective. Materials Today: Proceedings 4, 1147-1157
[8] Chan, C.; Wang, Y.; Ou, H.; He, Y.; Tang, X. (2014). A review on remanufacture of dies and moulds. Journal of Cleaner Production. 64, 13-23.
[9] Pliszka, I. et al. (2018). Surface improvement by wc-cu electro-spark coatings with laser modification. In: 10th conference on terotechnology, 18-19 October 2017 (pp. 237-242). Kielce, Poland: Kielce University of Technology.
[10] Pastircak, R., Scury, J. (2017). Effect of Pressure on Crystalization of AlSiMg Alloy. Archives of Metallurgy and Materials. 62 (4), 2193-2198. DOI: 10.1515/amm-2017-0323.
[11] Gucwa, M., Beczkowski, R. & Winczek, J. (2017). The effect of type of welding sequence during hardfacing chromium cast iron for erosion resistance. Archives of Foundry Engineering. 17(3), 51-54. DOI: 10.1515/afe-2017-0089.
[12] Bronček, J., Vicen, M., Fabian, P., Radek, N., 2020, Investigation of the tribological properties of the nitride layer on heat-treated steel 100Cr6, Lecture notes in mechanical engineering, 59th International Conference of Machine Design, 11-14 September 2018, (pp. 463-471). Žilina, Slovakia: University of Žilina.
[13] Mician, M. et al. (2020) Effect of the t(8/5) cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals. 10(2), 229. DOI: 10.3390/met10020229
[14] Winczek, J. et al. (2019). The Evaluation of the Wear mechanism of High-Carbon Hardfacing Layers. Archives of Metallurgy and Materials. 64 (3), 1111-1115. DOI: 10.24425/amm.2019.129502.

Go to article

Authors and Affiliations

J. Šutka
1
R. Koňar
1
J. Moravec
1
L. Petričko
1

  1. Department of Technological Engineering, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The application of hardfacing is one of the ways to restore the functional properties of worn elements. The possibility of using filler materials rich in chrome allows for better wear resistance than base materials used so far. The paper presents the results of research on the use of 3 different grades of covered electrodes for the regeneration of worn track staves. The content of the carbon in the covered electrodes was from 0,5% to 7% and the chromium from 5% to 33%. The microscopic and hardness tests revealed large differences in the structure and properties of the welds. The differences in the hardness of the welds between the materials used were up to 150 HV units. The difference in wear resistance, in the ASTM G65 test, between the best and worst materials was almost 12 times big.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
P. Wieczorek
M. Mičian
ORCID: ORCID
R. Koňár
Download PDF Download RIS Download Bibtex

Abstract

This research is focused on the analysis of heat-affected sub-zones in 2 mm thick steel S960MC samples, with the aim of observing and evaluating the mechanical properties after exposure to temperatures corresponding to individual heat-affected sub-zones. Test samples were prepared using a Gleeble 3500 thermo-mechanical simulator. The samples were heated in the range from 550°C to 1350°C and were subsequently quickly cooled. The specimens, together with the base material, were then subjected to tensile testing, impact testing, and micro-hardness measurements in the sample cross-section, as well as evaluation of their microstructure. Fracture surfaces are investigated in samples after impact testing. The heat-affected sub-zones studied indicate high sensitivity to the thermal input of welding. There is a significant decrease in tensile strength and yield strength at temperatures around 550°C.

Go to article

Authors and Affiliations

M. Mičian
ORCID: ORCID
J. Winczek
D. Harmaniak
R. Koňár
M. Gucwa
J. Moravec

This page uses 'cookies'. Learn more