Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of this paper is to measure the non-wetting to wetting transition temperatures of liquid tin on surfaces of different steel samples in vacuum with residual pressure of 10–8 bar. The experiments were conducted on four steels (C45, S103, CK60 and EN1.4034) of varying compositions using pure tin (99.99%) by the sessile drop method. Non-wetting to wetting transition (contact angle decreasing below 90°) by liquid tin was observed as function of increasing temperature in the range of 820-940 K for low alloyed steels C45, S103 and CK60, while it was considerably higher (around 1130 K) for high chromium EN1.4034 steel. It is concluded that at about the same temperatures, the surfaces of the steel samples are spontaneously deoxidized due to the combined effect of high temperature, low vacuum and C-content of steels. After the oxide layer is removed, the contact angles of liquid tin on steel surfaces were found in the range of 45-80° for low alloyed C45, S103 and CK60 steels and around 20° for high chromium EN1.4034 steel. These relatively high contact angle values compared to other metal/metal couples (such as liquid Cu on steels) are due to the formation of not fully metallic intermetallic compounds (FeSn and FeSn2) at the interface (such do not form in the Cu/Fe system).
Go to article

Authors and Affiliations

D. Varanasi
1
K.E. Aldawoudi
1
P. Baumli
1
D. Koncz-Horvath
1
G. Kaptay
1

  1. University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
Download PDF Download RIS Download Bibtex

Abstract

In this study, silicon carbide (SiC) reinforced lead-free solder (SAC305) was prepared by the powder metallurgy method. In this method SAC305 powder and SiC powder were milled, compressed and sintered to prepare composite solder. The composite solders were characterized by optical and scanning electron microscopy for the microstructural investigation and mechanical test. Addition of 1.5 wt. % and 2 wt. % ceramic reinforcement to the composite increased compressive strengths and microhardness up to 38% and 68% compared to those of the monolithic sample. In addition, the ceramic particles caused an up to 55% decrease in the wetting angle between the substrate and the composite solder and porosity was always increased with increase of SiC particles.

Go to article

Authors and Affiliations

Manoj Kumar Pal
G. Gergely
D. Koncz-Horvath
Z. Gacsi
Download PDF Download RIS Download Bibtex

Abstract

In this paper the effect of soldering technique and thermal shock test were investigated on SAC 305 solder joints, produced by two different solder method. The solder joints were subjected to different cycle numbers up to 5000 thermal shock tests with two different thermal profiles of –30/+110°C and –40/+125°C. Microstructural properties of the tested joints were examined with the focus on intermetallic layer thickness and crack formation/propagation. Thickness of the scallop shaped Cu6Sn5 intermetallic layer was increased with increasing cycle number for both THRS and multiwave joints, but the thickening was more effective for the THRS joints. Cracks typically formed at the solder alloy/ PTH barrel and the solder alloy/pin interfaces and propagated along grain boundaries and precipitations of intermetallic compound.

Go to article

Authors and Affiliations

D. Koncz-Horváth
G. Gergely
Z. Gyökér
Z. Gácsi

This page uses 'cookies'. Learn more