Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Strategies and roadmaps are essential in areas that require long-term planning, such as the energy transition. Strategic plans can play an important role in developing visions for reducing CO2 emissions, developing renewable energy sources (RES) and hydrogen technologies. Hydrogen can be included in value chains in various sectors of the economy as raw material, emission-free fuel, or as an energy carrier and storage. The analysis of the future of hydrogen energy, which is an essential component of transforming the economy into an environmentally neutral one, is an integral part of the strategies of the European Union (EU) Member States.
This article reviews the strategic documents of the EU countries in the field of a hydrogen economy. Currently, six EU Member States have approved the hydrogen strategy (Germany, France, the Netherlands, Portugal, Hungary, Czech Republic), and two of them have roadmaps (Spain, Finland). The others are working on their completion in 2021. EU countries have the possibility of energy transformation based on a hydrogen policy, including green hydrogen, within the framework of the European Green Deal, i.e. aiming for climate neutrality and creating a modern and environmentally friendly economy.
By 2030, some of the countries plan to become a leader not only in the field of hydrogen production or RES development aimed at this process but also in the areas of research and development (R&D), sales of new technologies, and international cooperation. Member countries are focused on the production of clean hydrogen using electrolysis, creating incentives to stimulate demand, developing a hydrogen market, and implementing hydrogen infrastructure.
Go to article

Authors and Affiliations

Renata Koneczna
1
ORCID: ORCID
Justyna Cader
1 2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

CCS (Carbon Capture and Storage) technology is one of the methods that limit the release of carbon dioxide into the atmosphere. However, the high cost of capturing CO2 in this technology is a major obstacle to the implementation of this solution by power plants. The reduction of costs is expected primarily on the side of the capture and separation of CO2 from flue/ industrial gas. The article presents the financial performance of the most popular amine technology (MEA) against mesoporous material about MCM-41 structure obtained from fly ash, impregnated with polyethyleneimine (PEI), for CCS installations. The study was conducted for an investment comprising three key components that provide a full value chain in CCS validation (capture, transport and storage). The mineralogical studies and determination of the physicochemical properties of mesoporous material produced from waste materials such as fly ash allowed us to identify the best class sorbents of MCM-41, which can be used in CO2 capture technologies. Developing an innovative relationship not only allows 100% of CO2 to be removed but also reduces operating costs (OPEX), primarily including energy by 40% and multiple material costs relative to amine mixtures such as MEA.

Go to article

Authors and Affiliations

Renata Koneczna
Magdalena Wdowin
Rafał Panek
Łukasz Lelek
Robert Żmuda
Wojciech Franus
Download PDF Download RIS Download Bibtex

Abstract

In less than a decade, the photovoltaic sector has transformed into a global business. The dynamics of its development vary depending on the country. According to estimates, the value of the photovoltaic micro-installations market in Poland at the end of 2019 exceeded PLN 2.8 billion. In the first half of 2020, the PV sector recorded dynamic growth with a total capacity of the micro-installations of 2.5 GWp. Government subsidies were among the factors contributing to the expansion of the PV sector. In Poland, there are many financial ways to intensify the construction of new renewable energy source installations, among others: feed-in tariff, grants, and loans. An example of photovoltaic grant support in Poland is the “Mój Prąd” [My Electricity] program created in 2019 with a budget of PLN 1.1 billion. The interest in the “My Electricity” program in individual provinces may vary, depending on socio-economic factors, technological and environmental resources, and the level of innovation. The research motivation of this article is a comparison of provinces in Poland according to selected energy, environmental, innovation, and socio-economic indicators and to show how these factors affect individual interest in the “My Electricity” photovoltaic development program in provinces. The highest correlation is for the total installation power under the “My Electricity” program and Gross Domestic Product and Human Developed Index. The highest correlation coefficient from RIS indicators and photovoltaic data programs was achieved for “R&D expenditure in the business sector”. The population was closely correlated with the total installation power and the grant value of the “My Electricity” program.
Go to article

Authors and Affiliations

Justyna Cader
1 2
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID
Renata Koneczna
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mercury emissions have become one of the problems in the energy sector in recent years. The currently used mercury removal techniques include: primary, secondary and preliminary methods. However, due to the large variation in the mercury content in hard and brown coal and the different characteristics of power plants, these methods are often not effective enough to meet the new requirements set by BREF/BAT which requires a search for new, high-efficiency solutions. The proposal for a new technology has been developed in the project “Hybrid Adsorption Systems to Reduce Mercury Emissions Using Highly Effective Polymer Components” (HYBREM). The project was implemented by the consortium of SBB Energy SA and ZEPAK Pątnów II Power Plant. An innovative, high-efficiency hybrid technology for purifying exhaust gases from mercury was developed. GORE polymer modules were used as a technology base where, in combination with the injection of solid sorbents, a hybrid technology was developed. To assess the economic efficiency of the similar case as in the HYBREM project model based on OPEX and CAPEX, each method was selected separately. The article focused on the substitution of solid sorbents used in the HYBREM project by zeolite based materials. Modified zeolite X, applied in the project, was derived from fly ash. Preliminary analysis shows that the system of proposed technologies is very cost-competitive compared only to GORE technology. The basic factors are the possibility of recovering zeolites from ash, combined with low investment outlays.

Go to article

Authors and Affiliations

Renata Koneczna
ORCID: ORCID
Robert Żmuda
Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID

This page uses 'cookies'. Learn more