Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The development of power industry obligates designers, materials engineers to create and implement new, advanced materials, in which Inconel 617 alloy is included. Nowadays, there are a lot of projects which describe microstructure and properties of Inconel 617 alloy. However, the welded joints from mentioned material is not yet fully discussed in the literature. The description of welded joints microstructure is a main knowledge source for designers, constructors and welding engineers in estimating durability process and degradation assessment for elements and devices with welds of Inconel 617 alloy. This paper presents the analysis and assessment of advanced nickel alloy welded joints, which have been done by tungsten inert gas (TIG). Investigations have included analysis made by light microscope and scanning electron microscope. The disclosed precipitates were identified with Energy Dispersive Spectroscopy (EDS) microanalysis, then it were done X-Ray Diffraction (XRD) phases analysis. To confirm the obtained results, a scanning-transmission electron microscope (STEM) analysis was also performed.

The purpose of the article was to create a comprehensive procedure for revealing the Inconel 617 alloy structure. The methodology presented in this article will be in future a great help for constructors, material specialists and welding engineers in assessing the structure and durability of the Inconel 617 alloy.

Go to article

Authors and Affiliations

J. Adamiec
N. Konieczna
Download PDF Download RIS Download Bibtex

Abstract

Nickel alloys, despite their good strength properties at high temperature, are characterized by limited weldability due to their susceptibility to hot cracking. So far, theories describing the causes of hot cracking have focused on the presence of impurities in the form of sulphur and phosphorus. These elements form low-melting eutectic mixtures that cause discontinuities, most frequently along solid solution grain boundaries, under the influence of welding deformations. Progress in metallurgy has effectively reduced the presence of sulphur and phosphorus compounds in the material, however, the phenomenon of hot cracking continues to be the main problem during the welding of nickel-based alloys. It was determined that nickel-based alloys, including Inconel 617, show a tendency towards hot cracking within the high-temperature brittleness range (HTBR). There is no information on any structural changes occurring in the HTBR. Moreover, the literature indicates no correlations between material-related factors connected with structural changes and the amount of energy delivered into the material during welding.

This article presents identification of correlations between these factors contributes to the exploration of the mechanism of hot cracking in solid-solution strengthened alloys with an addition of cobalt (e.g. Inconel 617). The article was ended with development of hot cracking model for Ni-Cr-Mo-Co alloys.

Go to article

Authors and Affiliations

J. Adamiec
N. Konieczna

This page uses 'cookies'. Learn more