Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Experimental tests were carried out to assess the failure model of steel and basalt fiber reinforced concrete two-span beams. Experimental research was focused on observing the changes in behavior of tested elements in dependence on the ratio of shear reinforcement and type of fiber. The beams had varied stirrup spacing. The steel fiber content was 78.5 kg/m3 (1.0% by vol.) and basalt fiber content was 5.0 kg/m3 (0.19% by vol.). Concrete beams without fibers were also examined. Two-span beams with a cross-section of 120×300 mm and a length of 4150 mm were loaded in a five-point bending test. Shear or flexural capacity of tested members was recorded. The effectiveness of both sorts of fibers as shear reinforcement was assessed and the differences were discussed. It was shown that fibers control the cracking process and the values of deflections and strains. Fibers clearly enhance the shear capacity of reinforced concrete beams.

Go to article

Authors and Affiliations

J. Krassowska
M. Kosior-Kazberuk
Download PDF Download RIS Download Bibtex

Abstract

Industrial utilization of fly ash from various kinds of fuel plays an important role in the envi-ronmentally clean and cost effective power production. The primary market for fly ash utilizationis as a pozzolanic addition in concrete production. The paper concerns the concretes containingfly ash called Fly Ash from Biomass (FAB) from co-combustion of hard coal and wood biomass(wood chips). Characterization of the fly ash was carried on by means of X-ray diffractometryand E-SEM/EDS analysis. The results of laboratory studies undertaken to evaluate the influence of FAB on concrete resistance to surface scaling due to cyclic freezing and thawing in the presenceof NaCl solution were presented. The tests were carried out for concretes containing up to 25% offly ash related to cement mass. Additionally, the microstructure of air-voids was described.

It was concluded that the FAB has significant effect on concrete freeze/thaw durability. The re-placement of cement by fly ash from co-combustion progressively transformed the concrete mi-crostructure into less resistant against freeze/thaw cycles and excessive dosage (over 15%) maydangerously increase the scaling.

Go to article

Authors and Affiliations

M. Kosior-Kazberuk
D. Jóźwiak-Niedźwiedzka

This page uses 'cookies'. Learn more