Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article proves that common LEDs may act as photodetectors with limited sensitivity, if they are polarized with an appropriate reverse voltage. The measured responsivities are ranged between 0.002 and 0.156 A/W and they depend on the LED type. The only one exception are white (phosphorescent) LEDs which do not exhibit any photosensitivity. There have also shown that a bandwidth of LEDs, which were examined in a role of photodetectors, is of a few tens of MHz, which is an order of magnitude greater than their modulation bandwidth as transmitters. The reasons of the observed LEDs behaviour are explained theoretically. The obtained results are indicated that some of them may be used as both transmitters and receivers in the VLC links working in a bi-directional half-duplex mode.

Go to article

Authors and Affiliations

M. Kowalczyk
ORCID: ORCID
J. Siuzdak
Download PDF Download RIS Download Bibtex

Abstract

The use of shredded tyre in civil engineering applications is a significant potential end use market. The reuse of tyre chips may not only address growing environmental and economic concerns, but also help to solve geotechnical problems associated with low shear strength. The purpose of this paper is to investigate the properties of tyre chips and tyre chips – sand mixture, and to find the mixture with the highest shear strength. In this study, an experimental testing program was undertaken using a large – scale triaxial apparatus with the goal of evaluating the optimum percentage of tyre chips in sand. The effects on shear strength of varying percentage of tyre chips and varying confining pressure were studied. Tyre chips content was suspected to have influence on stress – strain and volumetric strain behaviour of the mixture. Some tests were conducted to check the influence of number of used membranes, of saturation and compaction, on sample properties.

Go to article

Authors and Affiliations

E. Dembicki
M. Kowalczyk
P. Gotteland
Download PDF Download RIS Download Bibtex

Abstract

In this work, vacuum hot pressed Ni-Mn-Sn-In Heusler alloys with different concentration of In (0, 2 and 4 at.%), were investigated. The magneto-structural behaviour and microstructure dependencies on chemical composition and on heat treatment were examined. It was found that the martensite start transformation temperature increases with growing In content and to a lesser extent with increasing temperature of heat treatment. The high energy X-ray synchrotron radiation results, demonstrated that both chemical composition as well as temperature of heat treatment slightly modified the crystal structures of the studied alloys. Microstructural investigation performed by transmission electron microscopy confirmed chemical composition and crystal structure changes in the alloys.

Go to article

Authors and Affiliations

W. Maziarz
A. Wojcik
R. Chulist
M.J. Szczerba
M. Kowalczyk
P. Czaja
E. Cesari
J. Dutkiewicz
Download PDF Download RIS Download Bibtex

Abstract

In the present work, we performed the ultra-rapid annealing (URA) process for amorphous Fe78Ni8B14 melt-spun ribbons in order to obtain fine excellent microstructure assuring the best soft magnetic properties. Several microscopic methods mainly based on transmission electron microscopy (TEM) and Lorentz TEM (L-TEM) were applied for detailed studies of the microstructure and magnetic domains structure. The investigation revealed that the optimized parameters of the URA process (500°C/0.5-5 s) lead to outstanding soft magnetic properties. A mixture containing close to 50% amorphous phase and 50% α-Fe nanocrystals of size up to 30 nm has been already obtained after annealing for 3 s. These annealing conditions appear to be the most suitable in terms of microstructure providing the best magnetic properties.
Go to article

Authors and Affiliations

Wojciech Maziarz
1
ORCID: ORCID
A. Kolano-Burian
2
ORCID: ORCID
M. Kowalczyk
3
ORCID: ORCID
P. Błyskun
3
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID
A. Wójcik
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Lukasiewicz Research Network – institute of non-Ferrous Metals, 5 Generała Józefa Sowińskiego str., 44-121 Gliwice, Poland
  3. Warsaw University of Technology, the Faculty of Materials Science and Engineering, 141 Wołoska stR., 02-507 Warszawa, Poland

This page uses 'cookies'. Learn more