Search results

Filters

  • Journals
  • Date

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents control method for multiple two-wheeled mobile robots moving in formation. Trajectory tracking algorithm from [7] is extended by collision avoidance, and is applied to the different type of formation task: each robot in the formation mimics motion of the virtual leader with a certain displacement. Each robot avoids collisions with other robots and circular shaped, static obstacles existing in the environment. Artificial potential functions are used to generate repulsive component of the control. Stability analysis of the closed-loop system is based on Lyapunov-like function. Effectiveness of the proposed algorithm is illustrated by simulation results.

Go to article

Authors and Affiliations

W. Kowalczyk
K. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents construction and control system of the climbing robot Safari designed at the Poznan University of Technology for inspection of high building walls, executed in order to evaluate their technical condition. Because such tasks are uncomfortable and very dangerous for humans, this mobile machine gives a possibility to observe and examine the state of the surface on which it is moving. The robot is a construction developed for walking on flat but uneven vertical and horizontal surfaces. Its on-board equipment provides ability to remotely examine and record images reflecting the robot’s surroundings. At the beginning of the paper, several concepts of existing climbing robots (four-legged, six-legged, sliding platform) are outlined. Next, the mechanical system of the Safari robot is presented with special emphasis on its kinematic equations and description of movement stages. Then, the on-board manipulator as well as the sensor and control systems are described.

Go to article

Authors and Affiliations

P. Dutkiewicz
K. Kozłowski
W. Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.

Go to article

Authors and Affiliations

M. Nowicki
W. Respondek
J. Piasek
K. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to verify the hypothesis postulating that the supplementation of turkey diets with Cu nanoparticles can lower dietary inclusion levels of Cu without compromising the growth rate and antioxidant status of turkeys. The experiment was carried out on 648 one-day-old Hybrid Converter turkeys divided into 6 groups with 6 replicates per group, in a two-factorial design with 3 dietary inclusion levels of Cu (20, 10 and 2 mg/kg) and 2 dietary sources of Cu - copper sulfate (Cu-SUL) and Cu nanoparticles (Cu-NP). At 42 days of age, blood samples were collected from 2 birds per replicate (12 birds per group), after slaughter livers were collected for analyses. Blood and liver samples were assayed for: Cu, Zn, Ca, P, Mg, GLU, TP, ALB, UREA, TAG, TC, UA, ALT, AST, ALT, GGT, ALP, SOD, GPx, CAT, VIT C, FRAP, GSH+GSSG, LOOH, MDA. The results of this experiment demonstrate that a decrease in the dietary inclusion levels of Cu from 10 mg/kg to 2 mg/kg does not compromise the growth performance of turkeys, but weakens antioxidant defense mechanisms. A Cu dose of 20 mg/kg induces oxidation reactions and has a much more inhibitory effect on the antioxidant defense system than dietary Cu content of 2 mg/kg. In turkeys, dietary supplementation with Cu-NP has a more beneficial effect on carbohydrate metabolism and antioxidant status compared with Cu-SUL. The results of analyses examining the antioxidant and metabolic status of young turkeys indicate that 10 mg/kg is the optimal dietary inclusion level of Cu.
Go to article

Authors and Affiliations

K. Kozłowski
J. Jankowski
K. Otowski
Z. Zduńczyk
K. Ognik

This page uses 'cookies'. Learn more