Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main source of spatial information on concentration and deposition of air pollutants in Poland is the continental scale EMEP model with 50 km x 50 km grid. The coarse resolution of the EMEP model may be insufficient for regional scale studies. A new proposal is the application of the national scale atmospheric transport model FRAME (Fine Resolution Atmospheric Multi-pollutant Exchange), originally developed for the United Kingdom. The model works with 5 km x 5 km spatial resolution and the air column is divided into 33 layers. FRAME was used here to assess the spatial patterns of yearly averaged air concentrations, and wet and dry deposition of sulphur and nitrogen compounds for the area of Poland. This study presents preliminary results of the modeling of the yearly average concentrations as well as dry and wet depositions of SO,, NO, and NH, for Poland. FRAME results were compared with available measurements from the monitoring sites and national deposition budget with the EMEP and IMGW estimates. The results show close agreement with the measured concentrations expressed by determination coefficient close to O. 7 for both SO, and NO . The dry and wet deposition budgets for FRAME are also in close agreement with the EMEP and GIOŚ estimates. The FRAME model, despite its relatively simple meteorological parameterizations, is well suited to calculate the spatial pattern of annual average concentration and yearly deposition of atmospheric pollutants which was earlier presented for the UK and was shown in this paper for Poland. The model can also be used to analyze the impact of individual point sources or different emission sectors on spatial pattern of air concentration and deposition as well as testing the changes in deposition resulting from future emissions reduction scenarios.
Go to article

Authors and Affiliations

Maciej Kryza
Marek Błaś
Anthony J. Dore
Mieczysław Sobik
Download PDF Download RIS Download Bibtex

Abstract

This paper constitutes the sensitivity study of application the Polar WRF

model to the Svalbard area with testing selected parameterizations, including planetary

boundary layer, radiation and microphysics schemes. The model was configured, using

three one-way nested domains with 27 km, 9 km and 3 km grid cell resolutions. Results

from the innermost domain were presented and compared against measured wind speed

and air temperature at 10 meteorological stations. The study period covers two months:

June 2008 and January 2009. Significant differences between simulations results occurred

for planetary boundary layer (PBL) schemes in January 2009. The Mellor-Yamada-Janjic

(MYJ) planetary boundary layer (PBL) scheme resulted in the lowest errors for air

temperature, according to mean error (ME), mean absolute error (MAE) and correlation

coefficient values, where for wind speed this scheme was the worst from all the PBL

schemes tested. In the case of June 2008, shortwave and longwave radiation schemes

influenced the results the most. Generally, higher correlations were obtained for January,

both for air temperature and wind speed. However, the model performs better for June

in terms of ME and MAE error statistics. The results were also analyzed spatially, to

summarize the uncertainty of the model results related to the analyzed parameterization

schemes groups. Significant variability among simulations was calculated for January

2009 over the northern part of Spitsbergen and fjords for the PBL schemes. Standard

deviations for monthly average simulated values were up to 3.5°C for air temperature

and around 1 m s-1 for wind speed.

Go to article

Authors and Affiliations

Natalia Pilguj
Bartosz Czernecki
Maciej Kryza
Krzysztof Migała
Leszek Kolendowicz
Download PDF Download RIS Download Bibtex

Abstract

The results of the application and evaluation of the r.sun model for calculation of the total solar radiation for the Wedel Jarlsberg Land (SW Spitsbergen) are presented. Linke Turbidity Factor (LTF), which is the obligatory parameter for direct and diffused radiation calculations with the r.sun model, is derived here with the empirical formula and meteoro− logical measurements. Few different approaches for calculation of LTF are presented and tested. The r.sun model results, calculated with these various LTF, are evaluated through comparison with total solar radiation measurements gathered at Polish Polar Station. The r.sun model is found to be in good agreement with the measurements for clear sky condi− tions, with the explained variance (R2) close to 0.9. Overall, the model slightly underesti− mates the measured total radiation. Reasonable results were calculated for the cloudiness condition up to 2 octas, and for these r.sun model can be considered as a reliable and flexible tool providing spatial data on solar radiation for the study area.

Go to article

Authors and Affiliations

Maciej Kryza
Mariusz Szymanowski
Krzysztof Migała
ORCID: ORCID
Małgorzata Pietras

This page uses 'cookies'. Learn more