Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to UNESCO, in 2015, the sculpture as the artistic medium was third among financed public residency art programmes. Contemporary public art and cultural programmes across Europe were focused on finding a balance between cultural identity and cultural diversity among the communities. Therefore, aesthetics and function became a significant issue related to the exploration of participatory design on public sculpture. In this paper, an adopted model of Kurt Lewin’s force field analysis was used to explore the function of sculpture in the public space. The aim was to further evaluate inclusive design to answer the question: Does contemporary sculpture in the public space evoke a certain kind of group dynamic process?

Go to article

Authors and Affiliations

Krzysztof Krzysztof
Download PDF Download RIS Download Bibtex

Abstract

The zinc and lead industry generates substantial quantities of waste. Among the many types of wastes, such as dust or liquid, a large proportion are solid waste such as slags. The purpose of the study was the qualitative and quantitative assessment of the short rotary kiln slags and slags deposited in a hazardous waste landfill originating from zinc and lead metallurgy. This assessment represents the primary step in evaluating materials such as slags concerning their potential for substantial applications, such as process for metal separation. Additionally, this evaluation forms the basis for a comprehensive environmental study. The concentrations of the four predominant metals – Fe>Pb>Zn>Cu – and accompanying elements – Na>Ca>K>Ni>Mn>Cr – were determined using atomic absorption spectroscopy (AAS) after aqua regia digestion. A large variation was found in the phase analysis of the studied materials based on SEM, XRD, X-ray microanalysis, and BCR sequential extraction. The BCR analysis revealed the occurrence of major metals in four different fractions: acid-soluble, reducible, oxidizable, and residual. Pb was mainly present in the acid-soluble fraction, while Fe, Cu, and Zn were present in the residual fraction.
Go to article

Bibliography

  1. Alan, M. and D. Kara (2019). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey, Talanta, 194, pp. 189-198. DOI: 10.1016/j.talanta.2018.10.030.
  2. Baczewska, A. H., W. Dmuchowski, B. Gworek, P. Dąbrowski and P. Brągoszewska (2016). Comparison of bioindication methods for assessing the level of air pollution with heavy metals in Warsaw, Przemysł Chemiczny, 95/3, pp. 334-338. DOI: 10.15199/62.2016.3.1.
  3. Bernasowski, M., A. Klimczyk and R. Stachura (2017). Overview of Zinc Production in Imperial Smelting Process. Iron and Steelmaking Conference 4-6.10.2017, Horní Bečva, Česká republika.
  4. Briffa, J., E. Sinagra and R. Blundell (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, pp. 1-26. DOI: 10.1016/j.heliyon.2020.e04691.
  5. Cabała, J. (2009). Heavy metals in the soil environment of Olkusz Zn-Pb ore mining regions. Wydawnictwo Uniwersytetu Śląskiego Katowice 2009 (in Polish)
  6. Chao-Yin, K., W. Chung-Hsin and L. Shang-Lien (2005). Removal of copper from industrial sludge by traditional and microwave acid extraction, Journal of Hazardous Materials, 120, 1-3, pp. 249-256. DOI: 10.1016/j.jhazmat.2005.01.013.
  7. Dan Chen, Wing Yin Aua, A. R. Stijn van Ewijk and J. Stegemann (2021). Elemental and mineralogical composition of metal-bearing neutralisation sludges and zinc speciation – A review, Journal of Hazardous Materials, 416, 2. DOI: 10.1016/j.jhazmat.2021.125676.
  8. Ettler, V., F. Bodenan and O. Legendre (2001). Primary phases and natural weathering of old lead-zind pyrometallurgical slag from Pribram, Czech Republic, The Canadian Mineralogist, 39, pp. 873-888. DOI: 10.2113/gscanmin.39.3.873.
  9. Gao, H., G. F. Koopmans, J. Song, J. E. Groenenberg, X. Liu, R. N. J. Comans and L. Weng (2022). Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling, Geoderma, 423. DOI: 10.1016/j.geoderma.2022.115970.
  10. Herreweghe, S. V., R. Swennen, C. Vandecasteele and V. Cappuyns (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples, Environmental Pollution, 122, pp. 323-342. DOI: 10.1016/S0269-7491(02)00332-9.
  11. Izydorczyk, G., K. Mikula, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak and K. Chojnacka (2021). Potential environmental pollution from copper metallurgy and methods of management, Environmental Research, 197, pp. 1-11. DOI: 10.1016/j.envres.2021.111050.
  12. Jin, Z., T. Liu, Y. Yang and D. Jackson (2014). Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition, Ecotoxicology and Environmental Safety, 104, pp. 43-50. DOI: 10.1016/j.ecoenv.2014.02.003.
  13. Jonczy, I., M. Kamińska, B. Chwedorowicz and B. Kowalski (2017). The use of X-ray Spectral Analysis in Microareas in the determination of elements accompanying minerals of Zinc-Lead Ores from the Klucze I deposit. Systemy Wspomagania w Inżynierii Produkcji Górnictwo Zrównoważonego Rozwoju 2016, P. A. Nova. (in Polish)
  14. Ke, W., J. Zeng, F. Zhu, X. Luo, J. Feng, J. He and S. Xue (2022). Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting, Environmental Pollution, 307, pp. 1-11. DOI: 10.1016/j.envpol.2022.119586.
  15. Król, A., K. Mizerna and M. Bożym (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, Journal of Hazardous Materials, 384, 121502, pp. 1-9. DOI: 10.1016/j.jhazmat.2019.121502.
  16. Kruk, M. (2022). Comparison of digestion methods of slag samples from zinc and lead industry to identify the content of selected metals. ArchaeGraph. Łódź 2022 (in Polish)
  17. Lestari, F. Budiyanto and D. Hindarti (2018). Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia, IOP Conference Series: Earth and Environmental Science, 118, 1, pp. 1-7. DOI: 10.1088/1755-1315/118/1/012059.
  18. Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu and H. Yang (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans, Environmental Pollution, 257, pp. 1-7. DOI: 10.1016/j.envpol.2019.11361.
  19. Li, Y., I. Perederiy and V. G. Papangelakis (2008). Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, Journal of Hazardous Materials, 152, pp. 607-615. DOI: 10.1016/j.jhazmat.2007.07.052.
  20. Luo, S., S. Zhao, P. Zhang, J. Li, X. Huang, B. Jiao and D. Li (2022). Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology, Construction and Building Materials, 327, pp. 1-10. DOI: 10.1016/j.conbuildmat.2022.127006.
  21. Margui, V. Salvado, I. Queralt and M. Hidalgo (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes, Analytica Chimica Acta, 524, pp. 151-159. DOI: 10.1016/j.aca.2004.05.043.
  22. Nowińska, K. and Z. Adamczyk (2013). The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment, Górnictwo i Geologia, T. 8, z. 1, pp. 77-87. (in Polish)
  23. Nowińska, K. and Z. Adamczyk (2017). Slags of the Imperial Smelting Process for Zn and Pb production, Reference Module in Materials Science and Materials Engineering, pp. 1-5. DOI: 10.1016/B978-0-12-803581-8.03607-9.
  24. Pan, D. a., L. Li, X. Tian, Y. Wu, N. Cheng and H. Yu (2019). A review on lead slag generation, characteristic, and utilization, Resources, Conservation & Recycling, 146, pp. 140-155. DOI: 10.1016/j.resconrec.2019.03.036.
  25. Patle, A., R. Kurrey, M. K. Deb, T. K. Patle, D. Sinha and K. Shrivas (2022). Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review, Journal of the Idian Chemical Society, 99, pp. 1-12. DOI: 10.1016/j.jics.2022.100545.
  26. Rauret, G., J. Lopez-Sanchez, D. Luck, M. Yli-Halia, H. Muntau and P. Quevauviller (2001). EUR 19775 EN. E. Commission. Belgium.
  27. Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure and P. Quevauviller (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring,1, pp. 57-61. DOI: 10.1039/a807854h
  28. Różański, S. (2013). Fractionation of selected heavy metals in agricultural soils, Ecological Chemistry and Engineering S, 20, 1, pp. 117-125. DOI: 10.2478/eces-2013-0009.
  29. Seignez, N., D. Bulteel, D. Damidot, A. Gauthier and J.-L. Potdevin (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc, Waste Management and the Environment III, 92, pp. 31-40. DOI: 10.2495/WM060041.
  30. Singh, A. and M. K. Chandel (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk, Journal of Environmental Management, 304, pp. 1-11. DOI: 10.1016/j.jenvman.2021.114206.
  31. Singh, G., S. Das, A. A. Ahmed, S. Saha and S. Karmakar (2015). Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure, Procedia - Social and Behavioral Sciences, 195, pp. 2272-2279. DOI: 10.1016/j.sbspro.2015.06.316.
  32. Sobanska, S., D. Deneele, Barbillat and B. A. Ledesert (2016). Natural weathering of slags from primary Pb-Zn smelting as evidenced by Raman microspectroscopy, Applied Geochemistry, 64, pp. 107-117. DOI: 10.1016/j.apgeochem.2015.09.011.
  33. Tlustos, P., J. Szakova, A. Starkova and D. Pavlikova (2005). A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil, Central European Journal of Chemistry, 3, 4, pp. 830-851. DOI: 10.2478/BF02475207.
  34. Wali, A., G. Colinet and M. Ksibi (2014). Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia, Environmental Research, Engineering and Management, 4, 70, pp. 14-26. DOI: 10.5755/j01.erem.70.4.7807.
  35. Wang, J., Y. Jiang, J. Sun, J. She, M. Yin, F. Fang, T. Xiao, G. Song and J. Liu (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter, Ecotoxicology and Environmental Safety, 196, pp. 1-10. DOI: 10.1016/j.ecoenv.2020.110529.
  36. Warchulski, R. and K. Szopa (2014). Phase composition of Katowice – Wełnowiec pytometallurgical slags: preliminary SEM study, Contemporary Trends in Geoscience, 3, pp. 76-81. DOI: 10.2478/ctg-2014-0025.
  37. Xu, D.-M., R.-B. Fu, Y.-H. Tong, D.-L. Shen and X.-P. Guo (2021). The potential environment risk implications of heavy metals based on their geochemical and mineralogical characteristic in the size-segregated zinc smelting slags, Journal of Cleaner Production, 315, pp. 1-13. DOI: 10.1016/j.jelepro.2021.128199.
  38. Yin, N.-H., Y. Sivry, F. Guyou, P. N. L. Lens and E. D. v. Hullebusch (2016). Evaluation on chemical stability of lead blast furnance (LBF) and imperial smelting furnance (ISF) slags, Journal of Environmental Management, 180, pp. 310-323. DOI: 10.1016/j.jenvman.2016.05.052.
  39. Zemberyova, M., J. Bartekova and I. Hagarova (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, pp. 973-978. DOI: 10.1016/j.talanta.2006.05.057.
  40. Zhang, S., N. Zhu, W. Shen, X. Wei, F. Li, W. Ma, F. Mao and P. Wu (2022). Relationship between mineralogical phase and bound heavy metals in copper smelting slags, Resources, Conservation & Recycling, 178, pp. 1-7. DOI: 10.1016/j.resconrec.2021.106098.
Go to article

Authors and Affiliations

Milena Nocoń
1
Irena Korus
1
Krzysztof Loska
1

  1. Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an assessment of the mycological air quality in classrooms of school buildings located in Lesser Poland. In 10 schools, 5 sampling points were designated: 4 indoors and 1 as an "outdoor background". A 6-stage Andersen impactor was used to collect fungal aerosol samples. During sampling, dust measurements were made (using the DustTrak II dust meter) as well as temperature and relative humidity. The predominant genera of fungi were determined by the MALDI-TOF MS method. The results indicated no statistically significant differences in indoor air fungal concentrations among the tested locations (p>0.05). The highest concentrations were observed in large classrooms (max. 2,678 CFU∙m-3), however, these differences were not statistically significant across different types of school rooms (Kruskal-Wallis test: p>0.05). All rooms exhibited similar levels of fungal aerosol contamination. Relative air humidity had a significant influence on the number of microorganisms. The most frequently isolated fungi belonged to Cladosporium, Penicillium, and Aspergillus genera. Fungal aerosol concentrations in the tested classrooms did not exceed proposed limit values for this type of indoor environment. The results suggest that natural ventilation in classrooms is insufficient to ensure adequate microbiological quality of indoor air.
Go to article

Bibliography

[1]. Auger, E.J., & Moore-Colyer, M.J.S. (2017). The effect of management regime on airborne respirable dust concentrations in two different types of horse stable design. J. Equine Vet. Sci, 51, pp.105–109. DOI:10.1016/j.jevs.2016.12.007
[2]. Augustyńska, D. & Pośniak, M. (2016). Harmful factors in the working environment: acceptable values. CIOP – PIB, Warszawa. (in Polish)
[3]. Basińska, M. & Michałkiewicz, M. (2016). Variability of microbial air pollution and dust concentration inside and outside a selected school in Poznań. Ecol. Eng. 50, pp. 17–25. DOI:10.12912/23920629/65479
[4]. Brągoszewska, E., Mainka, A., Pastuszka, J.S., Lizończyk, K. & Desta, G.Y (2018). Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere, 9,87. DOI:10.3390/atmos9030087
[5]. Bulski, K. & Frączek, K. (2021). Mycological Air Quality at Animal Veterinary Practice. Yearbook of Environmental Protection (Rocznik Ochrona Środowiska), 23, pp. 168-179. DOI:10.54740/ros.2021.011
[6]. Canha, N., Almeida, S.M., Carmo Freitas do, C. & Wolterbeek, H.T. (2015) Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 41, pp. 11–22. DOI:10.1515/aep-2015-0034
[7]. Chegini, F.M., Baghani, A.N., Hassanvand, M.S., Sorooshian, A., Golbaz, S., Bakhtiari, R., Ashouri, A., Joubani, M.N. & Alimohammadi, M. (2020). Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration. Build Environ, 175. DOI:10.1016/j.buildenv.2020.106690
[8]. Clauß, M. (2015). Particle size distribution of airborne microorganisms in the environment – a review. Landbauforsch -·Appl. Agric. Forestry Res., 65, pp. 77-100. DOI:10.3220/LBF1444216736000
[9]. Dumała, S.M. & Dudzińska, M.R.., (2013). Microbiological Indoor Air Quality in Polish Schools. Annual Set Environ. Prot., 15, pp. 231-244.
[10]. Ejdys, E. (2009). The influence of atmospheric air on the quality of bioaerosol in school rooms in spring and autumn - mycological assessment. Ochrona Środowiska i Zasobów Naturalnych, 41, pp. 142-150. (in Polish)
[11]. Estillore, A.D., Trueblood, J.V. & Grassian, V.H. (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci., 7, pp. 6604-6616. DOI:10.1039/c6sc02353c
[12]. Eytyugina, M.G., Alves, C.A., Nunes, T. & Cerqueira, M. (2010). Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study. Quim. Nova, 5, pp. 1145–1149. DOI:10.1590/S0100-40422010000500027
[13]. Faridi, S., Hassanvand, M.S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M.H., Kashani, H., Gholampour, A., Niazi, S., Zare, A., Nazmara, S. & Alimohammadi, M. (2015) Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory Environ. Sci. Pollut. Res., 22, pp. 8190–8200. DOI:10.1007/s11356-014-3944-y
[14]. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Arch. Environ. Prot., 47(3), pp. 98-107, DOI 10.24425/aep.2021.138468
[15]. Fsadni, P., Frank, B., Fsadni, C. & Montefort, S. (2017). The Impact of Microbiological Pollutants on School Indoor Air Quality. Journal Geoscience and Environment Protection, 5, pp. 54-65. DOI:10.4236/gep.2017.55004
[16]. Gołofit-Szymczak, M. & Górny, R.L. (2010). Bacterial and fungal aerosols in air -conditioned office buildings in Warsaw, Poland – the winter season. Int. J. Occup. Saf. Ergon., 16, pp. 465-476. DOI:10.1080/10803548.2010.11076861
[17]. Gołofit-Szymczak, M., Górny, R.L., Ławniczek-Wałczyk, A., Cyprowski, M. & Stobnicka, A. (2015) Bacteria and fungal aerosols in the work environment of cleaners. Occupational Medicine (Medycyna Pracy), 66(6), pp. 779–791. (in Polish)
[18]. Górny, R.L., Frączek, K. & Ropek, D.R. (2020). Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. J. Environ. Health Sci. Eng., 18(2), pp. 1437-1450. DOI:10.1007/s40201-020-00559-9.
[19]. Górny, R.L. (2019). Microbial aerosols: sources, properties, health effects, exposure assessment – A review. KONA Powder and Particle Journal, 37, pp. 64-84. DOI:10.14356/kona.2020005
[20]. Górny, R.L., Cyprowski, M., Ławniczek-Wałczyk, A., Gołofit-Szymczak, M. & Zapór, L. (2011). Biohazards in the indoor environment – a role for threshold limit values in exposure assessment, [in:] Management of indoor air quality, Dudzińska MR (Ed.). Taylor & Francis Group, London, pp. 1-20.
[21]. Grzyb, J. & Lenart-Boroń, A. (2020) Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiol., 36, pp: 233–248. DOI:10.1007/s10453-020-09625-z
[22]. Jiayu, C., Qiaoqiao, R., Feilong, C., Chen, L., Jiguo, W., Zhendong, W., Lingyun, C., Liu, R. & Guoxia, Z. (2019). Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health, 3, pp. 347-357. DOI:10.26502/jesph.96120068 23. Jo, W.K. & Seo, Y.J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61(11), pp. 1570–1579. DOI:10.1016/j.chemosphere.2005.04.103
[24]. Jurado, S.R., Bankoff, A.D.P., Jurado, S.R., Bankoff, A.D.P. & Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[25]. Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[26]. Kim, K.H., Kabir, E. & Jahan, S.A. (2018). Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 67, pp. 23-35. DOI:10.1016/j.jes.2017.08.027
[27]. Lang-Yona, N., Shuster-Meiseles, T., Mazar, Y., Yarden, O. & Rudich, Y. (2016). Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor exposure study supported by laboratory experiments. Sci. Total Environ., 541, pp. 365-371. DOI:10.1016/j.scitotenv.2015.09.058
[28]. Lee, J.H. & Jo, W.K. (2006). Characteristic of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ. Res., 101, pp. 11-17. DOI:10.1016/j.envres.2005.08.009
[29]. Li, Y., Ge, Y., Wu, C., Guan, D., Liu, J. & Wang, F. (2020). Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. Aerobiol., 36, pp. 313–324. DOI:10.1007/s10453-020-09633-z
[30]. Mainka, A., Zajusz-Zubek, E., Kozielska, B. & Brągoszewska, E. (2015). Study of air pollution affecting children in a municipal kindergarten located on a road with heavy traffic. Engineering and Environmental Protection (Inżynieria i Ochrona Środowiska), 18(1), pp. 119-133. (in Polish)
[31]. Piersanti, A., D’Elia, I., Gualtieri, M., Briganti, G., Cappelletti, A., Zanini, G. & Ciancarella, L. (2021). The Italian National Air Pollution Control Programme: Air Quality, Health Impact and Cost Assessment. Atmosphere, 12(2), pp. 196. DOI:10.3390/atmos12020196
[32]. Puspita, I.D., Kamagata, Y., Tanaka, M., Asano, K. & Nakatsu, C.H. (2012). Are uncultivated bacteria really uncultivable? Microbes Environ., 27(4), pp. 356-366. DOI:10.1264/jsme2.ME12092
[33]. Sheik, G.B., Rheam, A.I., Shehri, Z.S. & Otaibi, O.B.M. (2015). Assessment of bacteria and fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. Res. J Biological Sci., 4(9), pp. 49-53.
[34]. Simon, X. & Duquenne, P. (2014). Assessment of workers' exposure to bioaerosols in a French cheese factory. Ann. Occup. Hyg., 58, pp. 677-692. DOI:10.1093/annhyg/meu027
[35]. Wlazło, A., Górny, R.L., Złotowska, R., Ławniczek, A., Łudzień-Izbińska, B., Harkawy A.S., Janczyk, E. (2008). Exposure of employees to selected harmful biological agents in the libraries of the Silesian Voivodship. Occupational Medicine (Medycyna Pracy), 59, pp. 159-170. (in Polish)
Go to article

Authors and Affiliations

Krzysztof Frączek
1
Karol Bulski
1
Maria Chmiel
1
ORCID: ORCID

  1. Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics,Hugo Kołłątaj University of Agriculture, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Studies on packaging made of polylactide (PLA) subjected to long-term influence of soil environment conditions have been presented in this paper. The scientific objective of this study was to determine changes in selected properties of the PLA packaging after long-term incubation in soil. These changes were investigated by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The structure, thermal properties, and disintegration degree of the packaging after their three-year incubation in soil have been discussed. It was found that the PLA packaging did not disintegrate significantly in the soil environment, and slight changes in their structure and lack of significant changes in thermal properties indicate that the efficiency of their degradation in soil conditions after three years is very low. This was mainly due to inadequate temperatures in the soil. It was also found (based on the results of scanning electron microscopy and gel permeation chromatography) that initiation of the biodegradation process took place and that this process is much faster than in the case of conventional non-biodegradable polymers. The results are confirmation that materials obtained of various biodegradable polymers (not only PLA) should be biodegradable only under strictly defined conditions, allocated to a specific type of polymer, i.e. those in which they are easily and quickly biodegradable
Go to article

Bibliography

  1. Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K.S. & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms, Journal of Agricultural Chemistry and Environment, 5, pp. 23-34. DOI:10.4236/jacen.2016.51003
  2. Ahmed, J. & Varshney, S.K. (2011). Polylactides – Chemistry, Properties and Green Packaging Technology: A Review, International Journal of Food Properties, 14, pp. 37-58. DOI:10.1080/10942910903125284
  3. Bhagwat, G., Gray, K., Wilson, S.P., Muniyasamy, S., Vincent, S.G.T., Bush, R. & Palanisami, T. (2020). Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future, Journal of Polymers and the Environment, 28, pp. 3055-3075. DOI:10.1007/s10924-020-01830-8
  4. Deroiné, M., Le Duigou, A., Corre, Y.M., Le, Gac, P.Y., Davies, P., César, G. & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater, Polymer Degradation and Stability, 108, pp. 319-329. DOI:10.1016/j.polymdegradstab.2014.01.020
  5. Dintcheva, N.T., Al-Malaika, S., Morici, E. & Arrigo, R. (2017). Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity, Journal of Applied Polymer Science, 134, pp. 44974-44986. DOI:10.1002/app.44974
  6. Donghee, K., Yoshito, A., Yoshihito, S. & Haruo, N. (2011). Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization, ACS Applied Materials & Interfaces, 3, pp. 385-391. DOI:10.1021/am1009953
  7. Fischer, E.W., Sterzel, H.J. & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Colloid and Polymer Science, 251, pp. 980-990. DOI:10.1007/BF01498927
  8. Itavaara, M., Karjomaa, S. & Selin, J.F. (2002). Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions, Chemosphere, 46, pp. 879-885. DOI:10.1016/s0045-6535(01)00163-1
  9. Janczak, K., Dąbrowska, G.B., Raszkowska-Kaczor., A., Kaczor, D., Hrynkiewicz, K. & Richert, A. (2020). Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, International Biodeterioration & Biodegradation, 155, 105087. DOI:10.1016/j.ibiod.2020.105087
  10. John, R.P., Nampoothiri, K.M. & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Applied Microbiology and Biotechnology, 74, pp. 524-534. DOI:10.1007/s00253-006-0779-6
  11. Kale, G., Auras, R. & Singh, S.P. (2007). Comparison of the degradability of poly (lactide ) packages in composting and ambient exposure conditions, Packaging Technology & Science, 20, pp. 49-70. DOI:10.1002/pts.742
  12. Kamiya, M., Asakawa, S. & Kimura, M. (2007). Molecular Analysis of Fungal Communities of Biodegradable Plastics in Two Japanese Soils, Soil Science and Plant Nutrition, 53, pp. 568-574. DOI:10.1111/j.1747-0765.2007.00169.x
  13. Kim, M.N., Kim, W.G., Weon, H.Y. & Lee, S.H. (2008). Poly(L-Lactide)-Degrading Activity of a Newly Isolated Bacterium, Journal of Applied Polymer Science, 109, pp. 234-239. DOI:10.1002/app.26658
  14. Kim, D.Y. & Rhee, Y.H. (2003). Biodegradation of Microbial and Synthetic Polyesters by Fungi, Applied Microbiology and Biotechonology, 61, pp. 300-308. DOI:10.1007/s00253-002-1205-3
  15. Lee, S.H. & Kim, M.N. (2010). Isolation of Bacteria Degrading Poly(butylenes succinate-co-butylene adipate) and Their lip A Gene, International Biodeterioration and Biodegradation, 64, pp. 184-190. DOI:10.1016/j.ibiod.2010.01.002
  16. Mehlika, K., Ashley, H. & Geoffrey, D.R. (2014). Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost, International Biodeterioration & Biodegradation, 95, pp. 301-310. DOI:10.1016/j.ibiod.2014.09.006
  17. Nakamura, K., Tomita, T., Abe, N. & Kamio, Y. (2001). Purification and Characterization of an Extracellular Poly(L-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104-1, Applied Environmental Microbiology, 67, pp. 345-353. DOI:10.1128/aem.67.1.345-353.2001
  18. PlasticsEurope (2022). Plastics – the Facts 2022, (https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (11.01.2023))
  19. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski, M. (2021). The effect of temperature on the biodegradation of different types of packaging materials under test conditions, Archives of Environmental Protection, 47, pp. 74-83. DOI:10.24425/aep.2021.139503
  20. Saadi, Z., Rasmont, A., Cesar, G., Bewa, H. & Benguigui, L. (2012). Fungal degradation of poly(l-lactide) in soil and in compost, Journal of Polymers and the Environment, 20, pp. 273-282. DOI:10.1007/s10924-011-0399-9
  21. Sarasua, J.R., Prud’Homme, R.E., Wisniewski, M., Le Borgne, A. & Spassky, N. (1998). Crystallization and Melting Behavior of Polylactides. Macromolecules, 31, pp. 3895-3905. DOI:10.1021/ma971545p
  22. Satti, S.M., Shah, A.A., Marsh, T.L. & Auras, R. (2018). Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, Journal of Polymers and the Environment, 26, pp. 3848-3857. DOI:10.1007/s10924-018-1264-x
  23. Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological Degradation of Plastics: A Comprehensive Review, Biotechnology Advances, 26, pp. 246-265. DOI:10.1016/j.biotechadv.2007.12.005
  24. Siparsky, G.L., Voorhees, K.J., Dorgan, J.R. & Schilling, K. (1997). Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends, Journal of Environmental Polymer Degradation, 5, pp. 125-136. DOI:10.1007/BF02763656
  25. Södergard, A., Selin, J.F. & Näsman, J.H. (1996). Hydrolytic degradation of peroxide modified poly(L-lactide), Polymer Degradation and Stability, 51, pp. 351-359. DOI:10.1016/0141-3910(95)00271-5
  26. Sterzyński, T. (2000). Processing and property improvement in isotactic polypropylene by heterogeneous nucleation, Polimery, 45, pp. 786-791.
  27. Teeraphatpornchai, T., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nakayama, M., Nomura, N., Nakahara, T. & Uchiyama, H. (2003). Isolation and Characterization of a Bacterium That Degrades Various Polyester-Based Biodegradable Plastics, Biotechnology Letters, 25, pp. 23-28. DOI:10.1023/A:1021713711160
  28. Tsuji, H., Tezuka, Y., Saha, S.K., Suzuki, M. & Itsuno, S. (2005). Spherulite growth of l-lactide copolymers: Effects of tacticity and comonomers, Polymer, 46, pp. 4917-4927. DOI:10.1016/j.polymer.2005.03.069
  29. Weir, N.A., Buchanan, F.J., Orr, J.F., Farrar, D.F. & Dickson, G.R. (2004). Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218, pp. 321-330. DOI:10.1243/0954411041932809
  30. Żenkiewicz, M., Malinowski, R., Rytlewski, P., Richert, A., Sikorska, W. & Krasowska, K. (2012). Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid), Polymer Testing, 31, pp. 83-92. DOI:10.1016/j.polymertesting.2011.09.012
Go to article

Authors and Affiliations

Rafał Malinowski
1
ORCID: ORCID
Marta Musioł
2
ORCID: ORCID
Krzysztof Moraczewski
3
Volodymyr Krasinskyi
1
ORCID: ORCID
Lauren Szymańska
1
ORCID: ORCID
Krzysztof Bajer
1
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
  2. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  3. Faculty of Materials Engineering, Kazimierz Wielki University, Bydgoszcz, Poland

This page uses 'cookies'. Learn more