Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Games are among problems that can be reduced to optimization, for which one of the most universal and productive solving method is a heuristic approach. In this article we present results of benchmark tests on using 5 heuristic methods to solve a physical model of the darts game. Discussion of the scores and conclusions from the research have shown that application of heuristic methods can simulate artificial intelligence as a regular player with very good results.
Go to article

Authors and Affiliations

Kamil Książek
Dawid Połap
Marcin Woźniak
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a lot of attention has been paid to deep learning methods in the context of vision-based construction site safety systems. However, there is still more to be done to establish the relationship between supervised construction workers and their essential personal protective equipment, like hard hats. A deep learning method combining object detection, head center localization, and simple rule-based reasoning is proposed in this article. In tests, this solution surpassed the previous methods based on the relative bounding box position of different instances and direct detection of hard hat wearers and non-wearers. Achieving MS COCO style overall AP of 67.5% compared to 66.4% and 66.3% achieved by the approaches mentioned above, with class-specific AP for hard hat non-wearers of 64.1% compared to 63.0% and 60.3%. The results show that using deep learning methods with a humanly interpretable rule-based algorithm is better suited for detecting hard hat non-wearers.
Go to article

Authors and Affiliations

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID
Kamil Książek
1
Jarosław A. Miszczak
1
Mirosław J. Skibniewski
1 2

  1. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 44-100 Gliwice, Poland
  2. A. James Clark School of Engineering, University of Maryland, College Park, MD 20742-3021, USA

This page uses 'cookies'. Learn more