Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bismuth niobate (BiNbO4) ceramics were fabricated by mixed oxide method and sintered by presureless sintering method. BiNbO4 ceramics doped with V2O5 additive in amount 0.125 wt%, 0.250 wt% and 1 wt% of was sintered at T = 910°C whereas BiNbO4 ceramics doped with 2 wt% of CuO additive was sintered at T = 890°C and T = 910°C. It was found that V2O5 additive improved morphology of the ceramic samples. However, the chemical composition of BiNbO4 ceramics in relation to bismuth oxide and niobium oxide manifested a tendency of lack of Bi2O3 component. Absorption bands for the BiNbO4 compound were identified. FTIR band positions associated with NbO6 octahedra suggested that the crystal structure changes after V2O5 incorporation.

Go to article

Authors and Affiliations

I. Kuźniarska-Biernacka
A. Lisińska-Czekaj
D. Czekaj
Download PDF Download RIS Download Bibtex

Abstract

Goal of the present research was to apply a solid state reaction route to fabricate bismuth layer-structured multiferroic ceramics described with the formula Bi5FeTi3O15 and reveal the influence of processing conditions on its crystal structure and phase composition. Simple oxide powders Bi2O3, TiO2 and Fe2O3 were used to fabricate Aurivillius-type bismuth layer-structured ferroelectrics. Pressureless sintering in ambient air was employed and the sintering temperature was TS = 900°C, TS = 1000°C and TS = 1040°C. The phase composition as well as crystal structure of ceramics sintered at various processing conditions was examined with powder X-ray diffraction method at room temperature. The Rietveld refinement method was applied for analysis of X-ray diffraction data. It was found that ceramics adopted orthorhombic structure Cmc21. The unit cell parameters of bismuth layer-structured multiferroic ceramics increased slightly with an increase in sintering temperature.

Go to article

Authors and Affiliations

A. Lisińska-Czekaj
D. Czekaj
B. Garbarz-Glos
W. Bąk
I. Kuźniarska-Biernacka

This page uses 'cookies'. Learn more