Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Organic binders applied in foundry plants based on synthetic resins, from the one side influence obtaining the required technological properties by the moulding sand and – in consequence – obtaining good quality castings, and on the other side are the source of volatile organic compounds (VOC). Together with synthetic resins their hardeners, which although added in very small amounts emit during their thermal decomposition substances negatively influencing the natural environment, are also used. Both, resins and hardeners only at the influence of high temperatures accompanying moulds pouring with liquid metal generate harmful volatile organic compounds including compounds from the BTEX group. Investigations of the temperature influence on the kind and amount of organic compounds formed during the thermal decomposition of selected binders and hardeners and their mixtures allow to determine temperature ranges the most favourable for emitting harmful substances as well as to compare their emission from the selected materials. The aim of this study was the determination the temperature influence on formation substances from the BTEX group, during thermal decomposition of the selected binder, its hardener and their mixture. The BTEX group emission constitutes one of the basic criteria in assessing the harmfulness of materials applied for moulding and core sands and it can undergo changes in dependence of the applied system resin-hardener. Investigations were carried out on the specially developed system for the thermal decomposition of organic substances in the temperature range: 5000 C – 13000 C, at the laboratory scale. The investigations subject was the furan resin, its hardener and hardened furan resin. The assessment of the emission degree of the BTEX group in dependence of the system subjected to the temperature influence was performed, within the studies. The temperature range, in which maximal amounts of benzene, toluene, ethylbenzene and xylenes were emitted from tested materials – was defined. The qualitative and quantitative analysis of the BTEX group were carried out with using the gas chromatography technique coupled with the mass spectrometry (GC/MS).
Go to article

Authors and Affiliations

M. Kubecki
M. Holtzer
S. Żymankowska-Kumon
Download PDF Download RIS Download Bibtex

Abstract

For research purposes and to demonstrate the differences between materials obtained from the carbonaceous additives to classic green moulding sands, five lustrous carbon carriers available on the market were selected. The following carbonaceous additives were tested: two coal dusts (CD1 and CD2), two hydrocarbon resins (HR1 and HR2) and amorphous graphite (AG1). The studies of products and material effects resulting from the high-temperature pyrolysis of lustrous carbon carriers were focused on determining the tendency to gas evolution, including harmful compounds from the BTEX group (benzene, toluene, ethylbenzene and xylene). Moreover, the content of lustrous carbon (LC), the content of volatile matter and loss on ignition (LOI) of the carbonaceous additives were tested. The solid products formed during high-temperature pyrolysis were used for the quantitative and qualitative evaluation of elemental composition after the exposure to temperatures of 875oC in a protective atmosphere and 950oC in an oxidizing atmosphere. The conducted studies have indicated the necessity to examine the additives to classic green moulding sands, which is of particular importance for the processing, rebonding and storage of waste sand. The studies have also revealed some differences in the quantitative and qualitative composition of elements introduced to classic moulding sands together with the carbonaceous additives that are lustrous carbon carriers. It was also considered necessary to conduct a research on lustrous carbon carriers for their proper and environmentally friendly use in the widely propagated technology of classic green sand system.
Go to article

Bibliography

[1] Said, R.M., Kamal, M.R.M., Miswan, N.H. & Ng, S.J. (2018). Optimization of Moulding Composition for Quality Improvement of Sand Casting. Journal of Advanced Manufacturing Technology (JAMT). 12(1), 301-310.
[2] Saikaew, C. & Wiengwiset, S. (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67, 26-31. DOI: 10.1016/j.clay.2012.07.005.
[3] Kwaśniewska-Królikowska, D. & Holtzer, M. (2013). Selection criteria of lustrous carbon carriers in the aspect of properties of greensand system. Metalurgija. 52(1), 62-64.
[4] LaFay, V. & Crandell, G. (2009). Three Methods of Reducing Seacoal by Adding Graphite into Greensand Molds. Transactions of the American Foundrymen's Society. 117, 789.
[5] Lewandowski J.L. (2000). Lustrous carbon carrier, Przegląd Odlewnictwa, 10, 384-386. (in Polish)
[6] Lewandowski, J.L. (1998). The effect of coal dust on the toxicity of classic moulding sand. Przegląd Odlewnictwa, 10 322-325. (in Polish)
[7] Jelínek, P. & Beňo, J. (2008). Morphological forms of carbon and their utilizations at formation of iron casting surfaces. Archives of Foundry Engineering. 8(2008), 67-70.
[8] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911. DOI: 10.1007/s11665-019-03947-x.
[9] Holtzer, M. (2012). Technologies of moulding and core sands in the aspect of environmental protection. 3rd Conference Hüttenes-Albertus Poland. 19-40. (in Polish)
[10] Holtzer, M., Bobrowski, A., Grabowska, B., Eichholzb, S., & Hodorc, K. (2010). Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Archives of Foundry Engineering. 10(4), 61-68.
[11] Lewandowski, J.L. (1997). Materials for Foundry Moulds. Kraków: WN Akapit. ISBN: 83-7108-21-2. (in Polish)
[12] Holtzer, M. (2005). Can we eliminate coal dust from classic moulding sands? Przegląd Odlewnictwa. 12, 794-798. (in Polish).
[13] Naro, R.L. (2002). Formation and control of lustrous carbon surface defects in iron and steel castings. Transactions-American Foundrymens Society. 1, 815-834.
[14] Naro, R.L. (2002). An Update on the Formation and Control of Lustrous Carbon Surface Defects in Iron Castings. Ductile Iron News. 3.
[15] Campbell, J., & Naro, R.L. (2010). Lustrous Carbon on Gray Iron (10-136). Transactions of the American Foundrymen's Society, 118, 277.
[16] Jelinek, P., Buchtele, J., Fiala, J. (2004). Lustrous carbon and pyrolysis of carbonaceous additives to bentonite sands, Casting Technology, 66 World Foundry Congress, 455-467.
[17] Engelhardt, T. (2016). Low-emission additives to bentonite-bonded moulding sands. Przegląd Odlewnictwa. 66, 220-223. (in Polish)
[18] Holtzer, M., Żymankowska-Kumon, S., Kubecki, M., & Kwaśniewska-Królikowska, D. (2013). Harmfulness assessment of resins used as lustrous carbon carriers in bentonite moulding sands. Archives of Metallurgy and Materials. 58(3), 817-822. DOI: 10.2478/amm-2013-0078M.
[19] Stefański, Z. (2008). New coal dust substitutes for bentonite moulding sands used in manufacture of castings from malleable iron and aluminium alloys. Transactions of the Foundry Research Institute. 4, 5-18.
[20] Wang, Y., Huang, H., Cannon, F.S., Voigt, R.C., Komarneni, S. & Furness, J.C. (2007). Evaluation of volatile hydrocarbon emission characteristics of carbonaceous additives in green sand foundries. Environmental Science & Technology. 41(8), 2957-2963.
[21] Wang, Y., Cannon, F.S. & Li, X. (2011). Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science & Technology. 45(19), 8529-8535. DOI: 10.1021/es2023048.
[22] Jelinek, P., Buchtele, J., Kriz, V., Nemecek, S., Kriz, A., & Fiala, J. (2002). Morphology and Formation of Pyrolytic Carbon in Moulding Mixtures. Acta Metallurgica Slovaca. 8(4), 415-422.
[23] Michta-Stawiarska, T. (1998). Difficulties in stabilizing the properties of classic molding sands. Krzepnięcie Metali i Stopów. 35, PAN - Oddział Katowice PL. ISSN 0208-9386 (in Polish)
[24] Ji, S., Wan, L., & Fan, Z. (2001). The toxic compounds and leaching characteristics of spent foundry sands. Water, Air, and Soil Pollution. 132(3-4), 347-364, DOI: 10.1023/A:1013207000046.
[25] Orlenius, J. (2008). Factors Related to the Formation of Gas Porosity in Grey Cast Iron: Investigation of Core Gas Evolution and Gas Concentrations in Molten Iron. Research Series from Chalmers University of Technology, ISSN 1653-8891, Licentiate Theses.
[26] Bobrowski, A. & Grabowska, B. (2012). The impact of temperature on furan resin and binders structure. Metallurgy and Foundry Engineering. 38, 73-80.
[27] Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica. 52, 238-244.
[28] Bobrowski, A., Drożyński, D., Grabowska, B., Kaczmarska, K., Kurleto-Kozioł, Ż., & Brzeziński, M. (2018). Studies on thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20–500° C. China Foundry. 15(2), 145-151.
[29] Liu, L., Cao, Y. & Liu, Q. (2015). Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel. 146, 103-110.
[30] Sonibare, O.O., Haeger, T., & Foley, S.F. (2010). Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy. 35(12), 5347-5353.
[31] Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H. & Silva, S.R.P. (1996). Raman spectroscopy on amorphous carbon films. Journal of Applied Physics. 80(1), 440-447.
Go to article

Authors and Affiliations

J. Kamińska
1
ORCID: ORCID
M. Stachowicz
2
ORCID: ORCID
M. Kubecki
3

  1. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
  2. Wroclaw University of Technology, Faculty of Mechanical Engineering, Poland
  3. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd) under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAH) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulness assessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000 C – 13000 C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for the desorption of compounds adsorbed in the column with adsorbent was found. The temperature range, in which the maximal amounts of benzene, toluene, ethylobenzene and xylenes are released from the resin, was defined. The qualitative and quantitative analyses of compounds from the BTEX group were performed by means of the gas chromatography combined with the mass spectrometry (GC/MS).

Go to article

Authors and Affiliations

M. Kubecki
M. Holtzer
R. Dańko
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski

This page uses 'cookies'. Learn more