Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper a transformation between two height datums (Kronstadt’60 and Kronstadt’86, the latter being a part of the present National Spatial Reference System in Poland) with the use of geostatistical method – kriging is presented. As the height differences between the two datums reveal visible trend a natural decision is to use the kind of kriging method that takes into account nonstationarity in the average behavior of the spatial process (height differences between the two datums). Hence, two methods were applied: hybrid technique (a method combining Trend Surface Analysis with ordinary kriging on least squares residuals) and universal kriging. The background of the two methods has been presented. The two methods were compared with respect to the prediction capabilities in a process of crossvalidation and additionally they were compared to the results obtained by applying a polynomial regression transformation model. The results obtained within this study prove that the structure hidden in the residual part of the model and used in kriging methods may improve prediction capabilities of the transformation model.
Go to article

Authors and Affiliations

Marcin Ligas
Marek Kulczycki
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is the comparison of the least squares prediction presented by Heiskanen and Moritz (1967) in the classical handbook “Physical Geodesy” with the geostatistical method of simple kriging as well as in case of Gaussian random fields their equivalence to conditional expectation. The paper contains also short notes on the extension of simple kriging to ordinary kriging by dropping the assumption of known mean value of a random field as well as some necessary information on random fields, covariance function and semivariogram function. The semivariogram is emphasized in the paper, for two reasons. Firstly, the semivariogram describes broader class of phenomena, and for the second order stationary processes it is equivalent to the covariance function. Secondly, the analysis of different kinds of phenomena in terms of covariance is more common. Thus, it is worth introducing another function describing spatial continuity and variability. For the ease of presentation all the considerations were limited to the Euclidean space (thus, for limited areas) although with some extra effort they can be extended to manifolds like sphere, ellipsoid, etc.
Go to article

Authors and Affiliations

Marcin Ligas
Marek Kulczycki

This page uses 'cookies'. Learn more