Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the analysis of the effect of Zr on the properties of the aluminium alloy AlSi9Cu1Mg. The effect of Zr was evaluated depending on the change in mechanical properties and heat resistance during a gradual addition of Zr with an increase of 0.05 wt. % Zr. Half of the cast experimental samples from each variant were heat treated by precipitation hardening T6 (hereinafter HT). The measured values in both states indicate an improvement of the mechanical properties, especially in the experimental variants with a content of Zr ≥ 0.20 wt. %. In the evaluation of Rm, the most significant improvement occurred in the experimental variant with an addition of Zr 0.25 wt. % after HT and E in the experimental variant with addition of Zr 0.20 wt. % after HT. Thus, a difference was found from the results of the authors defining the positive effect of Zr, in particular at 0.15 wt. %. When evaluating the microstructure of the AlSi9Cu1Mg alloy after Zr alloying, Zr phases are already eliminated with the addition of Zr 0.10 wt. %. Especially at higher levels of Zr ≥ 0.20 wt. %, long needle phases with slightly cleaved morphology are visible in the metal matrix. It can be stated that a negative manifestation of Zr alloying is expressed by an increase in gassing of experimental alloys, especially in variants with a content of Zr ≥ 0.15 wt. %. Experimental samples were cast into ceramic moulds. The development of an experimental alloy AlSi9Cu1Mg alloyed with Zr would allow the production of a more sophisticated material applicable to thin-walled Al castings capable of operating at higher temperature loads.

Go to article

Authors and Affiliations

M. Matejka
ORCID: ORCID
M. Kuriš
D. Bolibruchova
R. Pastirčák
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Monitoring the solidification process is of great importance for understanding the quality of the melt, for controlling it, and for predicting the true properties of the alloy. Solidification is accompanied by the development of heat, the magnitude of which depends on the different phases occurring during solidification. Thermal analysis is now an important part of and tool for quality control, especially when using secondary aluminium alloys in the automotive industry. The effect of remelting on the change of crystallization of individual structural components of experimental AlSi9Cu3 alloy was determined by evaluation of cooling curves and their first derivatives. Structural analysis was evaluated using a scanning electron microscope. The effect of remelting was manifested especially in nucleation of phases rich in iron and copper. An increasing number of remelts had a negative effect after the fourth remelting, when harmful iron phases appeared in the structure in much larger dimensions.

Go to article

Authors and Affiliations

M. Matejka
ORCID: ORCID
D. Bolibruchova
Justyna Kasińska
ORCID: ORCID
M. Kuriš
Download PDF Download RIS Download Bibtex

Abstract

At present, Al-Si-Cu based alloys (with a typical representative AlSi9Cu3 alloy) represent more than half of the castings used in various industries (automotive, aerospace and electrical engineering). These are most often sub-eutectic (exceptionally eutectic) alloys with a content of 6 to 13 wt. % Si and 1 to 5 wt. % Cu. The aim of the paper is to point out the importance of the evaluation of input raw materials that determines the overall properties of the casting and the costs invested in its production. A negative impact on performance can be expected when using an alloy made up of a high proportion of recycled material, despite its economic benefits. Experimental alloys were evaluated based on the results of crystallization process and a combination of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and deep etching. The effect of remelting and increasing the remelted returnable material in the batch was manifested especially in the crystallization of iron-rich phases. The negative effect of remelting on the structural components was manifested after the fourth remelting. Gradual increase of remelted returnable material in the batch causes harmful changes in the crystallization process.
Go to article

Bibliography

[1] Ciu, J. & Roven, H.J. (2010). Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China. 20, 2057-2063.
[2] Gaustad, G., Olivetti, E.A. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources Conservation and Recycling. 58, 79-87.
[3] Kasińska, J., Bolibruchová, D. & Matejka, M. (2020). The influence of remelting on the properties of AlSi9Cu3 alloy with higher iron content. Materials. 13, 575.
[4] Das, K.S. & Green, J.A.S. (2010). Aluminum Industry and Climate Change-Assessment and Responses. JOM: The Journal of The Minerals, Metals & Materials Society. 62, 27-31.
[5] Winczek, J., Gucwa, M., Mician, M. et al. (2019). The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials. 64 (3), 1111-1115
[6] Medlen, D. & Bolibruchová, D. (2012). The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony. Archives of Foundry Engineering. 12(1), 81-86.
[7] Martinec, D., Pastircak, R. & Kantorikova, E. (2020). Using of Technology Semisolid Squeeze Casting by Different Initial States of Material. Archives of Foundry Engineering. 20(1), 117-121.
[8] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Butterworth-Heinemann, Oxford, UK.
[9] Djurdjevic, M.B., Odanovic, Z. & Talijan, N. (2011). Characterization of the Solidification Path of AlSi5Cu (1-4 wt.%) Alloys Using Cooling Curve Analysis. JOM: The Journal of The Minerals, Metals & Materials Society. 63,11, 51-57.
[10] Lukač, I. (1981). Properties and structure of non-ferrous metals. ALFA Bratislava. (in Slovak).
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
M. Kuriš
1

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper compares changes in the structure and mechanical properties due to the synergistic effect of alloying elements Zr and Ti. It is assumed that by increasing the content of Zr and Ti in the aluminium alloy, better mechanical properties will be achieved. Paper focuses on description of the differences between the samples casted into the shell mold and the metal mold. Main difference between mentioned molds is a different heat transfer coefficient during pouring, solidification and cooling of the metal in the mold. The main goal was to analyse the influence of Zr and Ti elements and compare the mechanical properties after the heat treatment. Curing and precipitation aging were used during the experiment. The effect of the elements on AlSi7Mg0.3 alloy created differences between the excluded Zr phases after heat treatment. Evaluation of the microstructure pointed to the decomposition of large predominantly needle Zr phases into smaller, more stable formations.
Go to article

Bibliography

[1] Bolibruchová, D., Tillová, E. (2005). Al-Si foundry alloys. Žilina.
[2] Michna, Š., Lukáč, I. (2005). et al. Encyclopedia of aluminum.
[3] Bechný, L. (1990). Foundry metallurgy and technology. ALFA Bratislava.
[4] Bolibruchová, D., Kuriš, M. & Matejka, M. (2019). Effect of Zr on selected properties and porosity of AlSi9Cu1Mg alloy for the purpose of production of high-precision castings. Manufacturing Technology. 19(4), 1213-2489.
[5] Bolibruchova, D., Macko, J. & Bruna, M. (2014). Elimination of negative effect of Fe in secondary alloys AlSi6Cu4 (EN AC 45 000, A 319) by nickel. Archives of Metallurgy and Materials, 59, 717-721
[6] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improved properties of A319 aluminum casting alloy modified with Zr. Materials Letters. 2606-2610. DOI 10.1016/j.matlet. 2006.01.046
[7] Peng, G., Chen, K., Fang, H. & Chen, S. (2012). A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Materials Science and Engineering. Volume 535, 311-315.
[8] Sha, G. & Cerezo, A. (2004). Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050). Acta Materialia. 52(15), 4503-4516.
[9] Lü, X., Guo, E., Rometsch, P. & Wang, L. (2012). Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Transactions of Nonferrous Metals Society of China. 22, 2645-2651. Science Direct.
[10] STN EN 1706. AC–42100. Aluminium alloy for general purpose castings.
[11] Liu, S., Zhang, X.M. & Chen, M.A. & You, J. H. (2008). Influence of aging on quench sensitivity effect of 7055 aluminium alloy. Materials Characterization, 59(1), 53-60.
[12] Pourkia, N., Emamy, M., Farhangi, H. & Seyed, E. (2010). The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminium alloy. Materials Science and Engineering A. 527, 5318-5325.
[13] Tillova, E., Chalupova, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS ŽU UNIZA.

Go to article

Authors and Affiliations

E. Kantoríková
1
ORCID: ORCID
M. Kuriš
1
R. Pastirčák
1
ORCID: ORCID

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The article focused primarily on comparing the achieved mechanical results for AlSi7Mg0.3Cu0.5Zr and AlSi7Mg0.3Cu0.5Zr0.15Ti experimental alloys. Experimental variants with the addition of Zr ≥ 0.05 wt. % demonstrated the ability of Zr to precipitate in the form of Al3Zr or AlSiZr intermetallic phases. Zr precipitated in the form of long smooth needles with split ends. When evaluating the thermal analyses, the repeated peak was observed already with the initial addition of Zr in the range of approximately 630 °C. It was interesting to observe the increased interaction with other intermetallic phases. EDX analysis confirmed that the individual phases are based on Cu, Mg but also Fe. Similar phenomena were observed in experimental alloys with a constant addition of Zr and a gradual increase in Ti by 0.1 wt. %. A significant change occurred in the amount of precipitated Zr phases. A more significant increase in mechanical properties after heat treatment of AlSi7Mg0.3Cu0.5Zr experimental alloys was observed mainly above the Zr content ≥ 0.15 wt. % Zr. The improvement of yield and tensile strength over the AlSi7Mg0.3Cu0.5 reference alloy after heat treatment was minimal, not exceeding 1 %. A more significant improvement after heat treatment occurred in modulus of elongation with an increase by 6 %, and in hardness with an increase by 7 %. The most significant drop occurred in ductility where a decrease by 31 % was observed compared to the reference alloy. AlSi7Mg0.3Cu0.5Zr0.15Ti experimental alloys, characterized by varying Ti content, achieved a more significant improvement. The improvement in tensile strength over the AlSi7Mg0.3Cu0.5 reference alloy after heat treatment was minimal, not exceeding 1 %. A more significant improvement after heat treatment occurred in modulus of elongation with an increase by 12 %, in hardness with an increase by 12 % and the most significant improvement occurred in yield strengthwith a value of 18 %. The most significant decrease also occurred in ductility where, compared to the reference alloy, the ductility drop was by up to 67 %.
Go to article

Bibliography

[1] Vončina, M., Medved, J., Kores, S., Xie, P., Cziegler, A. & Schumacher, P. (2018). Effect of molybdenum an zirconium on aluminium casting alloys. Livarski Vestnik. 68-78.
[2] Medved, J. & Kores, M.V.S. (2018). Development of innovative Al-Si-Mn-Mg alloys with hight mechanical properties. The Minerals, Metals & Materials Society. 373-380. DOI 10.1007/978-3-319-72284-9_50.
[3] Pisarek, B.P., Rapiejko, C., Szymczak, T. & Payniak, T. (2017). Effect of Alloy Additions on the Structure and Mechanical Properties of the AlSi7Mg0.3 Alloy. Archives of Foundry Engineering. 17(1),137-142. ISSN: 1897-3310.
[4] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improve properties of A319 aluminium casting alloy modified with Zr. Materials Letters. 2606-2610. DOI: 10.1016/j.matlet.2006.01.046
[5] Sepehrband, P., Mahmudi, R., Khomamizadeh, F. (2004). Effect of Zr addition on the aging behavior of A319 aluminium cast alloy. Scripta Materialia. 253-257. DOI: 10.1016/j.scriptamat.2004.10.025
[6] Rakhmonov, J., Timelli, G. & Bonollo, F. (2017) Characterization of the solidification path and microstructure of secondary Al-7Si-3Cu-0,3Mg alloy with Zr, V and Ni additions. Material characterization. ISSN:1044-5803.
[7] Krajewski, W., Geer, A., Buraś, J., Piwowarski, G. & Krajewski, P. (2019). New developments of hight-zinc Al-Zn-Cu-Mn cast alloys. Materialstoday Proceedings. 306-311. DOI: 10.1016/j.matpr.2018.10.410.
[8] Hermandez-Sandoval, J., Samuel, A.M. & Vatierra, F.H. (2016). Thermal analysis for detection of Zr-rich phases in Al-Si-Cu-Mg 354-type alloys. Journal of metalcasting. ISSN 1939-5981.
[9] Bolibruchova, D., Kuriš, M., Matejka, M., Major Gabryś, K., Vicen, M., (2020) Effect of Ti on selected properties of AlSi7Mg0.3Cu0.5 alloy with constant addition of Zr. Archives of Metalurgy and Materials. 66(1), 65-72. DOI: 10.24425/amm.2021.134760.

Go to article

Authors and Affiliations

M. Kuriš
1
D. Bolibruchova
1
M. Matejka
1
ORCID: ORCID
E. Kantoríková
1
ORCID: ORCID

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The article is focused on the synergic effect of constant content of Zr and higher content of Ti on mechanical properties Al-Si alloy. The Ti additions were in proportions of 0.1, 0.2 and 0.3 wt.% Ti. The casting process was carried out in ceramic molds, created for the investment casting technology. Half of the experimental samples were processed by precipitation curing T6. The measured results were compared with primary alloy AlSi7Mg0,3 and experimental alloy AlSi7Mg0.3Cu0.5Zr0.15. In variant with addition 0.1 wt. %, the tensile strength Rm increased by 1,5% but the elongation AM decreased to 40%. Variants with 0.2 and 0.3 wt. % addition of Ti achieved similar Rm but approximately 40% decrease in AM. However, it is interesting that yield strength Rp0.2 increased for all variants by approximately 14 to 20%. The results point out the possibility of developing a more sophisticated alloy for automotive industry.

Go to article

Authors and Affiliations

D. Bolibruchová
ORCID: ORCID
M. Kuriš
M. Matejka
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID
M. Vicen

This page uses 'cookies'. Learn more