Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the microstructure and selected properties of ausferritic nodular cast iron annealed at the temperature 520 and 550°C.

This choice was dictated by the temperatures used in the practice of nitriding. Nodular graphite in cast iron was obtained with use of

Inmold process. Cast iron containing molybdenum and copper ensuring obtaining an ausferrite in the cast iron matrix without the use of

heat treatment of castings was tested. The effect of annealing temperature on the microstructure and the kind of fracture of the ausferritic

nodular cast iron was presented. The effect of an annealing temperature on hardness, impact strength and the microhardness of ausferritic

nodular cast iron matrix was shown too. The lamellar structure of phases in the cast iron matrix after annealing has been ascertained. There

has been an increase in hardness of an annealed cast iron and microhardness of its matrix. The reduction in the impact strength of the cast

iron annealed at 520 and 550°C was approximately 10-30%. Both an increase in the hardness of cast iron as well as an decrease in its

impact strength is probably due to the separation of secondary carbides during the heat treatment.

Go to article

Authors and Affiliations

G. Gumienny
L. Klimek
B. Kurowska
Download PDF Download RIS Download Bibtex

Abstract

The aim of these studies was to obtain single phase cubic modification of Li7La3Zr2O12 by mechanical milling and annealing of La(OH)3, Li2CO3 and ZrO2 powder mixture. Fritsch P5 planetary ball mill, Rigaku MiniFlex II X-ray diffractometer, Setaram TG-DSC 1500 analyser and FEI Titan 80-300 transmission electron microscope were used for sample preparation and investigations. The applied milling and annealing parameters allowed to obtain the significant contribution of c-Li7La3Zr2O12 in the sample structure, reaching 90%. Thermal measurements revealed more complex reactions requiring further studies.

Go to article

Authors and Affiliations

D. Oleszak
B. Kurowski
T. Pikula
M. Pawlyta
M. Senna
H. Suzuki
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the characterization of structure, magnetic and mechanical properties of (FeNiCo)100-x(AlSi)x (x = 0, 5, 10, 15, 25) multicomponent alloys prepared by casting. The results of X-ray diffraction measurements, scanning electron microscopy observations and hardness and magnetic properties investigations are presented. The studies show that cast (FeNiCo)100-x(AlSi)x alloys reveal dendritic morphology and their phase composition depends on (Al + Si) content. For x ≤ 10 a face-centered cubic phase is observed, while the increase of Al and Si content results in a body-centered cubic phase formation. It leads to a fivefold increase of hardness from 88 HV to 526 HV. The investigated alloys have high magnetic induction reaching 170 emu/g, while their coercivity value is even up to 2.9 kA/m for x = 15, and strongly depends on chemical and phase composition.
Go to article

Authors and Affiliations

B. Kurowski
1
ORCID: ORCID
D. Oleszak
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska Str. 141, 02-507 Warsaw, Poland

This page uses 'cookies'. Learn more