Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Abstract RAPD analysis was applied to assess the degree of DNA polymorphism in A. fistulosum calli of high chromosomal instability. Nineteen of 24 randomly selected RAPD primers revealed scorable polymorphism between calli and seeds (reference material). Polymorphic band frequency was 55/237 in seeds and 36/233 in calli; variability on the DNA level was thus lower in calli than in seeds (15.4% vs. 23.2% of band positions). UPGMA analysis of Jaccard's coefficients confirmed the genetic similarity of the analyzed cultures. The most distinctive DNA changes in calli involved coincident loss of original bands or the appearance of novel bands. Seven such changes (4 losses, 3 gains) were observed. Our results suggest that changes on the chromosomal level and on the DNA level occurred independently of each other and that different callus lines underwent similar genetic changes during culture, presumably due to strong selection pressure effected by standard in vitro conditions.
Go to article

Authors and Affiliations

Patryk Mizia
Dagmara Kwolek
Tomasz Ilnicki
Download PDF Download RIS Download Bibtex

Abstract

Abstract The male-specific DNA markers are very useful in molecular sexing of non-flowering plants and seeds of dioecious species. In this paper we identified ten Y chromosome-specific RAPD primers suitable for identification of male plants in three Cannabaceae species with sex chromosomes (Humulus lupulus, XX/XY; H. japonicus, XX/XY1Y2; Cannabis sativa, XX/XY). Basing on the nucleotide sequence of the OPJ-09 RAPD product we developed the HJY09 SCAR marker, which is very efficient in sexing of Japanese hop.
Go to article

Authors and Affiliations

Patryk Mizia
Magdalena Cygan
Andrzej J. Joachimiak
Dagmara Kwolek
Magdalena Denysenko
Andrzej Chramiec-Głąbik
Aleksandra Grabowska-Joachimiak
Download PDF Download RIS Download Bibtex

Abstract

Holoparasitic genera within the family Orobanchaceae are characterized by greatly reduced vegetative organs; therefore, molecular analysis has proved to be a useful tool in solving taxonomic problems in this family. For this purpose, we studied all species of the genera Orobanche and Phelipanche occurring in Central Europe, specifically in Poland, the Czech Republic, Slovakia, and Austria, supplemented by samples mainly from Spain, France, Germany, and Ukraine. They were investigated using nuclear sequences (ITS region) and a plastid trnLtrnF region. The aim of this study was to examine phylogenetic relationships within Orobanche and Phelipanche from Central Europe; we focused on problematic species and aggregates, recent taxonomic changes in these (rank and secondary ranks), and host ranges. The most interesting results concern the exlusion of O. mayeri from O. alsatica aggr. Additionally, following the rules of traditional taxonomy, the correct names and types of some secondary ranks are given and, as a result of this, a new combination below the Phelipanche genus is made (P. sect. Trionychon). The host ranges of the investigated species in Central Europe include 102 species from 12 families, most often from Asteraceae. For this purpose, ca. 400 localities were examined in the field. Moreover, data acquired from the literature and European and Asian herbaria were used.
Go to article

Authors and Affiliations

Renata Piwowarczyk
Magdalena Denysenko-Bennett
Grzegorz Góralski
Dagmara Kwolek
Óscar Sánchez Pedraja
Patryk Mizia
Magdalena Cygan
Andrzej J. Joachimiak
Download PDF Download RIS Download Bibtex

Abstract

In the predominantly polyploid and apomictic genus Hieracium (Asteraceae) sexual diploids are extremely rare and their distribution is limited mainly to the refugial areas of southern Europe. Here we characterized for the first time the chromosome complex of the relict species Hieracium bracteolatum from a diploid population on the Greek Island of Evia. The cytogenetic analysis based on classical chromosome staining, C-banding/DAPI method and fluorescence in situ hybridization with rDNA probes (rDNA-FISH) showed no major differences in the karyotype structure between this relict species and other diploids within the genus, especially in terms of chromosome morphology and rDNA location. Our study is part of the still very scarce research on the karyotype organization in sexual Hieracium taxa.
Go to article

Bibliography

ALTINORDU F, PERUZZI L, YU Y, and HE X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65(3): 586–592.

ASKER SE, and JERLING L. 1992. Apomixis in plants. CRC Press, Boca Raton, FL, USA.

BELYAYEV A, PAŠTOVÁ L, FEHRER J, JOSEFIOVÁ J, CHRTEK J, and MRÁZ P. 2018. Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next generation sequencing data. Plant Systematics and Evolution 304: 387 –396.

CHRTEK J, MRÁZ P, and SEVERA M. 2004. Chromosome numbers in selected species of Hieracium s.str. (Hieracium subgen. Hieracium) in the Western Car-pathians. Preslia 76: 119–139.

CHRTEK J, MRÁZ P, ZAHRADNÍCEK J, MATEO G, and SZELĄG Z. 2007. Chromosome numbers and DNA ploidy levels of selected species of Hieracium s.str. (Asteraceae). Folia Geobotanica 42: 411–430.

CHRTEK J, ZAHRADNÍČEK J, KRAK K, and FEHRER J. 2009. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phyloge-netic groups. Annals of Botany 104: 161–178.

CHRTEK J, MRÁZ P, BELYAYEV A, PAŠTOVÁ L, MRÁZOVÁ V, CAKLOVÁ P, JOSEFIOVÁ J, ZAGORSKI D, HARTMANN M, JANDOVÁ M, PINC J, and FEHRER J. 2020. Evolutionary history and genetic diversity of apomictic allopolyploids in Hier-acium s.str.: morphological versus genomic features. American Journal of Botany 107: 66–90.

FEHRER J, KRAK K, and CHRTEK J. 2009. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evolutionary Biology 9: 239. https://doi.org/10.1186/1471-2148-9-239

GERLACH WL, and DYER TA. 1980. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Research 8: 4851–4865.

GRABOWSKA-JOACHIMIAK A, MOSIOLEK M, LECH A, and GÓRALSKI G. 2011. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicus Siebold & Zucc. Cytogenetic and Genome Research 132: 203–211.

ILNICKI T, HASTEROK R, and SZELĄG Z. 2010. Cytogenetic analysis of Hieracium transylvanicum (Asteraceae). Caryologia 63: 192–196.

LEVAN A, FREDGA K, and SANDBERG AA. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.

MERXMÜLLER H. 1975. Diploide Hieracien. Anales del Instituto Botánico A. J. Cavanilles 32: 189–196.

MRÁZ P, and ZDVOŘÁK P. 2019. Reproductive pathways in Hieracium s.s.(Asteraceae): strict sexuality in diploids and apomixis in polyploids. Annals of Botany 123: 391–403.

MRÁZ P, FILIPAS L, BĂRBOS MI, KADLECOVÁ J, PAŠTOVÁ L, BELYAYEV A, and FEHRER J. 2019. An unexpected new diploid Hieracium from Europe: Integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon 68: 1258-1277.

MUSIAŁ K, and SZELĄG Z. 2019. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeast-ern Europe V. Acta Biologica Cracoviensia Series Botanica 61(2): 63–68.

MUSIAŁ K, VLADIMIROV V, and SZELĄG Z. 2020. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe VI. Acta Biologica Cracoviensia Series Botanica 62(2): 43–50.

OKADA T, ITO K, JOHNSON SD, OELKERS K, SUZUKI G, HOUBEN A, MUKAI Y, and KOLTUNOW AM. 2011. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. Plant Physiology 157: 1327–1341.

SCHUHWERK F, and LIPPERT W. 1998. Chromosomenzahlen von Hieracium (Compositae, Lactucaceae) Teil 2. Sendtnera 5: 269–286.

SZELĄG Z. 2010. Hieracia balcanica V. A new diploid species in Hieracium sect. Naegeliana (Asteraceae) from Macedonia. Annales Botanici Fennici 47: 315–319.

SZELĄG Z, ILNICKI T, NIKETIĆ M, and TOMOVIĆ G. 2007. Diploid chromosome numbers in five Hieracium species from Serbia and Montenegro. Acta Biologica Cracoviensia Series Botanica 49(1): 119–121.

SZELĄG Z, and ILNICKI T. 2011. Diploid chromosome numbers in Hieracium and Pilosella (Asteraceae) from Macedonia and Montenegro. Acta Biologica Cracoviensia Series Botanica 53(2): 124–126.

UNFRIED I, and GRUENDLER P. 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Research 18(13): 4011. https://doi.org/10.1093/nar/18.13.4011

VLADIMIROV V. 2003. A new diploid Hieracium (Asteraceae: Lactuceae) from Bulgaria. Botanical Journal of the Linnean Society 143: 213–218.

VLADIMIROV V, and SZELĄG Z. 2006. A new diploid species of Hieracium sect. Pannosa (Asteraceae) from Bulgaria. Botanical Journal of the Linnean Society 150: 261– 265.

WOLNY E, and HASTEROK R. 2009. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Annals of Botany 104: 873–881.
Go to article

Authors and Affiliations

Aleksandra Grabowska-Joachimiak
1
ORCID: ORCID
Magdalena Żytkowicz
1
Dagmara Kwolek
2
ORCID: ORCID
Zbigniew Szeląg
3
ORCID: ORCID

  1. Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140 Kraków, Poland
  2. Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
  3. Pedagogical University of Cracow, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Horizontal gene transfer (HGT) is a process that allows genetic material to flow between even distantly related organisms. It is primarily observed in bacteria and protists but also in different lineages of eucaryotes. The first HGT cases in plants were discovered at the beginning of the 21st century and have been intensively studied ever since. Researchers have placed particular emphasis on the plant kingdom, especially parasitic plants. This review presents the current state of knowledge about this phenomenon in plants, with a special focus on parasitic plants.
Among the described factors facilitating HGT, close physical contact between organisms is believed to be one of the most important. It is noted especially in the case of parasitism and similar relationships. For that reason, reported occurrences of this phenomenon in holoparasites, hemiparasites, and mycoheterotrophic plants are compared. The mechanisms responsible for HGT in plants still remain unclear, however, the studies described here suggest that both DNA and RNA may play a role as a carrier in that process. Also, the transfer between genomes of different organelles in the cell, intracellular gene transfer (IGT), and its relationships with HGT are described. The occurrence of the HGT and IGT phenomena concerning different genomes: nuclear, mitochondrial, and plastid is discussed in the review. Finally, some future areas of research in the field are proposed.
Go to article

Bibliography

ARIMURA S. 2018. Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiology 176(1): 152–161.

ARIMURA S, YAMAMOTO J, AIDA GP, NAKAZONO M, and TSUTSUMI N. 2004. Frequent fusion and fission of plant mito-chondria with unequal nucleoid distribution. Proceedings of the National Academy of Sciences of the U. S. A. 101(20): 7805–7808.

BARKMAN TJ, MCNEAL JR, LIM S-H, COAT G, CROOM HB, YOUNG ND, and DEPAMPHILIS CW. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angios-perms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7: 248.

BELLOT S, CUSIMANO N, LUO S, SUN G, ZARRE S, GRÖGER A, TEMSCH E, and RENNER SS. 2016. Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the Saxi-fragales. Genome Biology and Evolution 8(7): 2214–2230.

BERGTHORSSON U, ADAMS KL, THOMASON B, and PALMER JD. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424(6945): 197–201.

BERGTHORSSON U, RICHARDSON AO, YOUNG GJ, GOERTZEN LR, and PALMER JD. 2004. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proceedings of the National Academy of Sciences of the U. S. A. 101(51): 17747–17752.

BURKE SV, WYSOCKI WP, ZULOAGA FO, CRAINE JM, PIRES JC, EDGER PP, MAYFIELD-JONES D, CLARK LG, KELCHNER SA, and DUVALL MR. 2016. Evolutionary relationships in panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biology 16(1): 140.

CAI L, ARNOLD BJ, XI Z, KHOST DE, PATEL N, HARTMANN CB, MANICKAM S, SASIRAT S, NIKOLOV LA, MATHEWS S, SACKTON TB, and DAVIS CC. 2021. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology 31: 1002–1011.

CHOI KS, and PARK S. 2021. Complete plastid and mitochondrial genomes of Aeginetia indica reveal intracellular gene transfer (IGT), horizontal gene transfer (HGT), and cytoplasmic male sterility (CMS). International Journal of Molecular Sciences 22(11): 6143.

CHRISTIN P-A, EDWARDS EJ, BESNARD G, BOXALL SF, GREGORY R, KELLOGG EA, HARTWELL J, and OSBORNE CP. 2012. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Current Biology 22(5): 445–449.

COLE LW. 2016. The evolution of per-cell organelle number. Frontiers in Cell and Developmental Biology 4: 85. CUSIMANO N, and RENNER SS. 2019. Sequential horizontal gene transfers from different hosts in a wide-spread Eurasian parasitic plant, Cynomorium coccineum. American Journal of Botany 106(5): 679–689.

CUSIMANO N, and WICKE S. 2015. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytologist 210(2): 680-693.

DAVID-SCHWARTZ R, RUNO S, TOWNSLEY B, MACHUKA J, and SINHA N. 2008. Long-distance transport of mRNA via par-enchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytologist 179(4): 1133–1141.

DAVIS CC, ANDERSON WR, and WURDACK KJ. 2005. Gene transfer from a parasitic flowering plant to a fern. Proceedings of the Royal Society B 272(1578): 2237–2242.

DAVIS CC, and WURDACK KJ. 2004. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305(5684): 676–678.

DAVIS CC, and XI Z. 2015. Horizontal gene transfer in parasitic plants. Current Opinion in Plant Biology 26: 14–19.

DUNNING LT, OLOFSSON JK, PARISOD C, CHOUDHURY RR, MORENO- VILLENA JJ, YANG Y, DIONORA J, QUICK WP, PARK M, BENNETZEN JL, BESNARD G, NOSIL P, OSBORNE CP, and CHRISTIN P-A. 2019. Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the U. S. A. 116(10): 4416–4425.

EMILIANI G, FONDI M, FANI R, and GRIBALDO S. 2009. A horizontal gene transfer at the origin of phenylpro-panoid metabolism: a key adaptation of plants to land. Biology Direct 4: 7.

FONTDEVILA A. 2011. The Dynamic Genome: A Darwinian Approach. OUP Oxford. FREEMAN VJ. 1951. Studies on the virulence of bacterioph-age-infected strains of Corynebacterium diphtheriae. Journal of Bacteriology 61(6): 675–688.

FUENTES I, STEGEMANN S, GOLCZYK H, KARCHER D, and BOCK R. 2014. Horizontal genome transfer as an asexual path to the formation of new species. Nature 511(7508): 232–235.

GANDINI CL, and SANCHEZ-PUERTA MV. 2017. Foreign plastid sequences in plant mitochondria are frequently ac-quired via mitochondrion-to-mitochondrion horizontal transfer. Scientific Reports 7: 43402.

GOGARTEN JP. 2003. Gene transfer: gene swapping craze reaches eukaryotes. Current Biology 13(2): R53–R54.

GOGARTEN JP, DOOLITTLE WF, and LAWRENCE JG. 2002. Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution 19(12): 2226–2238.

GRIFFITH F. 1928. The significance of pneumococcal types. The Journal of Hygiene 27(2): 113–159.

HAUPT S, OPARKA KJ, SAUER N, and NEUMANN S. 2001. Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. Journal of Experimental Botany 52(354): 173–177.

HIBDIGE SGS, RAIMONDEAU P, CHRISTIN P-A, and DUNNING LT. 2020. Phylogenetic relatedness, co-occurrence, and rhizomes increase lateral gene transfer among grasses. bioRxiv, 2020.02.17.952150.

HUANG J. 2013. Horizontal gene transfer in eukaryotes: the weak-link model. Bioessays 35(10): 868–875.

IORIZZO M, GRZEBELUS D, SENALIK D, SZKLARCZYK M, SPOONER D, and SIMON P. 2012a. Against the traffic: The first evidence for mitochondrial DNA transfer into the plastid genome. Mobile Genetic Elements 2(6): 261–266.

IORIZZO M, SENALIK D, SZKLARCZYK M, GRZEBELUS D, SPOONER D, and SIMON P. 2012b. De novo assembly of the carrot mitochondrial genome using next generation sequen-cing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biology 12: 61.

JOEL DM. 2013. The haustorium and the life cycles of parasitic Orobanchaceae. In: Joel DM, Gressel J and Musselman LJ (eds), Parasitic Orobanchaceae: Para-sitic Mechanisms and Control Strategies, 21–23. Springer, Verlag, Berlin, Heidelberg.

KADO T, and INNAN H. 2018. Horizontal gene transfer in five parasite plant species in Orobanchaceae. Genome Biology and Evolution 10(12): 3196–3210.

KEELING PJ, and PALMER JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9(8): 605–618.

KIM G, and WESTWOOD JH. 2015. Macromolecule exchange in Cuscuta-host plant interactions. Current Opinion in Plant Biology 26: 20–25.

KLEINE T, MAIER UG, and LEISTER D. 2009. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annual Review of Plant Biology 60: 115–138.

KOONIN EV, MAKAROVA KS, and ARAVIND L. 2001. Horizontal gene transfer in prokaryotes: quantification and classi-fication. Annual Review of Microbiology 55: 709–742.

KOULINTCHENKO M, KONSTANTINOV Y, and DIETRICH A. 2003. Plant mitochondria actively import DNA via the permeability transition pore complex. The EMBO Journal 22(6): 1245–1254.

KWOLEK D, DENYSENKO-BENNETT M, GÓRALSKI G, CYGAN M, MIZIA P, PIWOWARCZYK R, SZKLARCZYK M, and JOACHIMIAK AJ. 2017. The first evidence of a host-to-parasite mitochondrial gene transfer in Orobanchaceae. Acta Biologica Cracoviensia Series Botanica 59(1): 13-22.

LAWRENCE JG, and ROTH JR. 1996. Selfish operons: Hor-izontal transfer may drive the evolution of gene clusters. Genetics 143(4): 1843–1860.

LI F-W, BROUWER P, CARRETERO-PAULET L, CHENG S, DE VRIES J, DELAUX P-M, EILY A, KOPPERS N, KUO L-Y, LI Z, SIMENC M, SMALL I, WAFULA E, ANGARITA S, BARKER MS, BRÄUTIGAM A, DEPAMPHILIS CW, GOULD S, HOSMANI PS, HUANG Y-M, HUETTEL B, KATO Y, LIU X, MAERE S, MCDOWELL R, MUELLER LA, NIEROP KGJ, RENSING SA, ROBISON T, ROTHFELS CJ, SIGEL EM, SONG Y, TIMILSENA PR, VAN DE PEER Y, WANG H, WILHELMSSON PKI, WOLF PG, XU X, DER JP, SCHLUEPMANN H, WONG GK-S, and PRYER KM. 2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants 4(7): 460–472.

LI F-W, VILLARREAL JC, KELLY S, ROTHFELS CJ, MELKONIAN M, FRANGEDAKIS E, RUHSAM M, SIGEL EM, DER JP, PITTERMANN J, BURGE DO, POKORNY L, LARSSON A, CHEN T, WESTSTRAND S, THOMAS P, CARPENTER E, ZHANG Y, TIAN Z, CHEN L, YAN Z, ZHU Y, SUN X, WANG J, STEVENSON DW, CRANDALL- STOTLER BJ, SHAW AJ, DEYHOLOS MK, SOLTIS DE, GRAHAM SW, WINDHAM MD, LANGDALE JA, WONG GK-S, MATHEWS S, and PRYER KM. 2014. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proceedings of the National Academy of Sciences of the U. S. A. 111(18): 6672–6677.

LYNCH M. 2007. The Origins of Genome Architecture. Sinauer Associates, Inc. Publishers, Sunderland, MA.

MA P-F, ZHANG Y-X, GUO Z-H, and LI D-Z. 2015. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Scientific Reports 5: 11608.

MOWER JP, STEFANOVIĆ S, HAO W, GUMMOW JS, JAIN K, AHMED D, and PALMER JD. 2010. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biology 8: 150.

MOWER JP, STEFANOVIĆ S, YOUNG GJ, and PALMER JD. 2004. Plant genetics: gene transfer from parasitic to host plants. Nature 432(7014): 165–166.

NICKRENT DL. 2020. Parasitic angiosperms: How often and how many? Taxon 69 (1): 5-27.

NICKRENT DL, BLARER A, QIU Y-L, VIDAL-RUSSELL R, and ANDERSON FE. 2004. Phylogenetic inference in Raffle-siales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology 4: 40.

OCHMAN H, LAWRENCE JG, and GROISMAN EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784): 299–304.

PARK J-M, MANEN J-F, and SCHNEEWEISS GM. 2007. Horizontal gene transfer of a plastid gene in the non-photosyn-thetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Molecular Phylogenetics and Evolu-tion 43(3): 974–985.

PARK S, GREWE F, ZHU A, RUHLMAN TA, SABIR J, MOWER JP, and JANSEN RK. 2015. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytologist 208: 570–583.

PETERSEN G, ANDERSON B, BRAUN H-P, MEYER EH, and MØLLER IM. 2020. Mitochondria in parasitic plants. Mitochondrion 52: 173–182.

PETERSEN G, CUENCA A, MØLLER IM, and SEBERG O. 2015. Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Scientific Reports 5: 17588.

RICE DW, ALVERSON AJ, RICHARDSON AO, YOUNG GJ, SANCHEZ- PUERTA MV, MUNZINGER J, BARRY K, BOORE JL, ZHANG Y, DEPAMPHILIS CW, KNOX EB, and PALMER JD. 2013. Horizontal transfer of entire genomes via mitochon-drial fusion in the angiosperm Amborella. Science 342 (6165): 1468–1473.

RICE DW, and PALMER JD. 2006. An exceptional hori-zontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that hapto-phyte and cryptophyte plastids are sisters. BMC Biology 4: 31.

RICHARDS TA., SOANES MS, FOSTER PG, LEONARD G, THORNTON CR, and TALBOT NJ. 2009. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. The Plant Cell 21(7): 1897–1911.

SAGAN L. 1967. On the origin of mitosing cells. Journal of Theoretical Biology 14(3): 255–74.

SANCHEZ-PUERTA MV. 2014. Involvement of plastid, mitochon-drial and nuclear genomes in plant-to-plant horizontal gene transfer. Acta Societatis Botanicorum Poloniae 83(4): 317–323.

SANCHEZ-PUERTA MV, CHO Y, MOWER JP, ALVERSON AJ, and PALMER JD. 2008. Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Molecular Biology and Evolution 25(8): 1762–1777.

SANCHEZ-PUERTA, M. VIRGINIA, ALEJANDRO EDERA, CAROLINA L. GANDINI, ANNA V. WILLIAMS, KATHARINE A. HOWELL, PAUL G. NEVILL, and IAN SMALL. 2019. Genome-scale transfer of mitochondrial DNA from legume hosts to the holopar-asite Lophophytum mirabile (Balanophoraceae). Mo-lecular Phylogenetics and Evolution 132 (March): 243–50.

SCHNEIDER AC, CHUN H, STEFANOVIĆ S, and BALDWIN BG. 2018. Punctuated plastome reduction and host-parasite horizontal gene transfer in the holoparasitic plant genus Aphyllon. Proceedings of the Royal Society B 285(1887): 20181535.

SHAHID S, KIM G, JOHNSON NR, WAFULA E, WANG F, CORUH C, BERNAL-GALEANO V, PHIFER T, DEPAMPHILIS CW, WESTWOOD JH, and AXTELL MJ. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553(7686): 82–85.

SHTRATNIKOVA VY, SCHELKUNOV MI, PENIN AA, and LOGACHEVA MD. 2020. Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa, its structure, gene expression and RNA editing. PeerJ 8: e9309.

SINN BT, and BARRETT CF. 2020. Ancient mitochondrial gene transfer between fungi and the orchids. Molecular Biology and Evolution 37(1): 44–57.

SKIPPINGTON E, BARKMAN TJ, RICE DW, and PALMER JD. 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proceedings of the National Academy of Sciences of the U. S. A. 112(27): E3515–E3524.

SKIPPINGTON E, BARKMAN TJ, RICE DW, and PALMER JD. 2017. Comparative mitogenomics indicates respiratory com-petence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals hori-zontal gene transfer and remarkable variation in genome size. BMC Plant Biology 17(1): 49.

SKIPPINGTON E, and RAGAN MA. 2012. Phylogeny rather than ecology or lifestyle biases the construction of Escher-ichia coli-Shigella genetic exchange communities. Open Biology 2(9): 120112.

SOUCY SM, HUANG J, and GOGARTEN JP. 2015. Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16(8): 472–482.

STEGEMANN S, and BOCK R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science 324(5927): 649–651.

STEGEMANN S, KEUTHE M, GREINER S, and BOCK R. 2012. Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences of the U. S. A. 109(7): 2434–2438.

STRAUB SCK, CRONN RC, EDWARDS C, FISHBEIN M, and LISTON A. 2013. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biology and Evolution 5(10): 1872–1885.

VAUGHN JC, MASON MT, SPER-WHITIS GL, KUHLMAN P, and PALMER JD. 1995. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. Journal of Molecular Evolu-tion 41(5): 563–572.

VOGEL A, SCHWACKE R, DENTON AK, USADEL B, HOLLMANN J, FISCHER K, BOLGER A, SCHMIDT MHW, BOLGER ME, GUNDLACH H, MAYER KFX, WEISS-SCHNEEWEISS H, TEMSCH EM, and KRAUSE K. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nature Communications 9: 2515.

WANG M, WEIBERG A, LIN F-M, THOMMA BPHJ, HUANG H-D, and JIN H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2: 16151.

WEIBERG A, and JIN H. 2015. Small RNAs - the secret agents in the plant-pathogen interactions. Current Opinion in Plant Biology 26: 87–94.

WEIBERG A, WANG M, BELLINGER M, and JIN H. 2014. Small RNAs: a new paradigm in plant-microbe interactions. Annual Review of Phytopathology 52: 495–516.

WEIBERG A, WANG M, LIN F-M, ZHAO H, ZHANG Z, KALOSHIAN I, HUANG H-D, and JIN H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154): 118–123.

WESTWOOD JH, RONEY JK, KHATIBI PA, and STROMBERG VK. 2009. RNA translocation between parasitic plants and their hosts. Pest Management Science 65(5): 533–539.

WESTWOOD JH, YODER JI, TIMKO MP, and DEPAMPHILIS CW. 2010. The evolution of parasitism in plants. Trends in Plant Science 15(4): 227–235.

WICKELL DA, and LI F-W. 2020. On the evolutionary significance of horizontal gene transfers in plants. New Phytologist 225(1): 113–117.

WICKE S. 2013. Genomic evolution in Orobanchaceae. In: Joel DM, Gressel J and Musselman LJ (eds), Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies, 267–286. Springer, Verlag, Berlin, Heidelberg.

WICKE S, MÜLLER KF, DEPAMPHILIS CW, QUANDT D, WICKETT NJ, ZHANG Y, RENNER SS, and SCHNEEWEISS GM. 2013. Mechanisms of functional and physical genome reduc-tion in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. The Plant Cell 25(10): 3711–3725.

WIJAYAWARDENA BK, MINCHELLA DJ, and DEWOODY JA. 2013. Hosts, parasites, and horizontal gene transfer. Trends in Parasitology 29(7): 329–338.

WOLF JB. 2009. Cyto-nuclear interactions can favor the evolution of genomic imprinting. Evolution 63(5): 1364–1371.

WOODSON JD, and CHORY J. 2008. Coordination of gene expression between organellar and nuclear genomes. Nature Reviews Genetics 9(5): 383–395.

XI Z, BRADLEY RK, WURDACK KJ, WONG K, SUGUMARAN M, BOMBLIES K, REST JS, and DAVIS CC. 2012. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13: 227.

YANG Z, WAFULA EK, KIM G, SHAHID S, MCNEAL JR, RALPH PE, TIMILSENA PR, YU W-B, KELLY EA, ZHANG H, PERSON TN, ALTMAN NS, AXTELL MJ, WESTWOOD JH, and DEPAMPHILIS CW. 2019. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nature Plants 5(9): 991–1001.

YANG Z, ZHANG Y, WAFULA EK, HONAAS LA, RALPH PE, JONES S, CLARKE CR, LIU S, SU C, ZHANG H, ALTMAN NS, SCHUSTER SC, TIMKO MP, YODER JI, WESTWOOD JH, and DEPAMPHILIS CW. 2016. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to para-site adaptation. Proceedings of the National Academy of Sciences of the U. S. A. 113(45): E7010–E7019.

YOSHIDA S, MARUYAMA S, NOZAKI H, and SHIRASU K. 2010. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328(5982): 1128.

ZERVAS A, PETERSEN G, and SEBERG O. 2019. Mitochondrial genome evolution in parasitic plants. BMC Evolution-ary Biology 19(1): 87.

ZHANG D, QI J, YUE J, HUANG J, SUN T, LI S, WEN J-F, HETTENHAUSEN C, WU J, WANG L, ZHUANG H, WU J, and SUN G. 2014. Root parasitic plant Orobanche aegyp-tiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase- like genes by horizontal gene transfer. BMC Plant Biology 14: 19.

ZHANG Y, FERNANDEZ-APARICIO M, WAFULA EK, DAS M, JIAO Y, WICKETT NJ, HONAAS LA, RALPH PE, WOJCIECHOWSKI MF, TIMKO MP, YODER JI, WESTWOOD JH, and DEPAMPHILIS CW. 2013. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evolutionary Biology 13: 48.

ZHAO N, GROVER CE, CHEN Z, WENDEL JF, and HUA J. 2019. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC Plant Biology 19(1): 492.
Go to article

Authors and Affiliations

Grzegorz Góralski
1
ORCID: ORCID
Magdalena Denysenko-Bennett
1
ORCID: ORCID
Anna Burda
1
ORCID: ORCID
Natalia Staszecka-Moskal
1
ORCID: ORCID
Dagmara Kwolek
1
ORCID: ORCID

  1. Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

This page uses 'cookies'. Learn more