Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Microstructures and mechanical properties of as-cast Al-6.5Mg-1.5Zn-0.5Fe alloys newly alloy-designed for the parts of automobile were investigated in detail. The aluminum (Al) sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1mm by multi-pass rolling at ambient temperature and subsequently annealed for 1h at 200~500°C. The as-cast Al sheet was deformed without a formation of so large cracks even at huge rolling reduction of 75%. The recrystallization begun to occur at 250°C, it finished at 350°C. The as-rolled material showed tensile strength of 430 MPa and tensile elongation of 4.7%, however the specimen after annealing at 500°C showed the strength of 305 MPa and the elongation of 32%. The fraction of high angle grain boundaries above 15 degree increased greatly after annealing at high temperatures. These characteristics of the specimens after annealing were discussed in detail.

Go to article

Authors and Affiliations

Seong-Hee Lee
Download PDF Download RIS Download Bibtex

Abstract

A cold roll bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 multi-layer sheet. Two AA6061 and two AA5052 sheets with 2mm thickness are stacked alternately to each other, and reduced to a thickness of 2 mm by multi-pass cold rolling. The roll bonded multi-layer sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded sheet shows a typical deformation structure that the grains are elongated to the rolling direction. However, after T4 and T6 aging treatments, it has a recrystallization structure consisting of the coarse equiaxed grains in both AA5052 and AA6061 sheets. The as rolled material shows a lamella structure in which AA5052 and AA6061 sheets are stacked alternately to each other, having higher hardness in AA5052 than in AA6061. However, T4 and T6 aging treated materials show a different lamella structure in which the hardness of the AA6061 layers is higher than that of the AA5052 layers. The strengths of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.5 times respectively, compared to that of the starting material.

Go to article

Authors and Affiliations

Seong-Hee Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The four-layer stack accumulative roll bonding (ARB) process using AA1050, AA5052 and AA6061 alloy sheets is performed up to 2 cycles without a lubricant at room temperature. The sample fabricated by the ARB is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 alloys are alternately stacked to each other. The changes of microstructure and mechanical properties with annealing for the-ARBed aluminum sheet are investigated in detail. The as-ARBed sheet shows an ultrafine grained structure, however the grain diameter is some different depending on the kind of aluminum alloys. The complex aluminum alloy still shows ultrafine structure up to annealing temperature of 250℃, but above 275℃ it exhibits a heterogeneous structure containing both the ultrafine grains and the coarse grains due to an occurrence of discontinuous recrystallization. This change in microstructure with annealing also has an effect on the change of the mechanical properties of the sample. Especially, the specimen annealed at 300℃ represents abnormal values for the strength coefficient K and work hardening exponent n value.
Go to article

Bibliography

[1] L. Ding, Y. Weng, S. Wu, R.E. Sansers, Z. Jia, Q. Liu, Mater. Sci. Eng. A651, 991 (2016).
[2] X. Fan, Z. He, W. Zhou, S. Yuan, J. Mater. Process. Tech. 228, 179 (2016).
[3] J.Y. Hwang, S.H. Lee, Korean J. Mater. Res. 29 (6), 392 (2019).
[4] S.H. Jo, S.H. Lee, Korean J. Mater. Res. 30 (5), 246 (2020).
[5] S.S. Na, Y.H. Kim, H.T. Son, S.H. Lee, Korean J. Mater. Res. 30 (10), 542 (2020).
[6] M. Jeong, J. Lee, J.H. Han, Korean J. Mater. Res. 29, 10 (2019).
[7] S.J. Oh, S.H. Lee, Korean J. Mater. Res. 28 (9), 534 (2018).
[8] E .H. Kim, H.H. Cho, K.H. Song, Korean J. Mater. Res. 27, 276 (2017).
[9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scrip. Mater. 39, 1221 (1998).
[10] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47, 579 (1999).
[11] S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
[12] S.H. Lee, H. Utsunomiya, T. Sakai, Mater. Trans. 45, 2177 (2004).
[13] S.H. Lee, J. Kor. Inst. Met. & Mater. 43 (12), 786 (2005).
[14] S.H. Lee, C.H. Lee, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 6, 3661 (2006).
[15] S.H. Lee, C.H. Lee, S.J. Yoon, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 7, 3872 (2007).
[16] N. Takata, S.H. Lee, C.Y. Lim, S.S. Kim, N. Tsuji, J. Nanosci. and Nanotech. 7, 3985 (2007).
[17] S.H. Lee, H.W. Kim, C.Y. Lim, J. Nanosci. and Nanotech. 10, 3389 (2010).
[18] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Composites Sci. and Tech. 68, 2003 (2008).
[19] Ming-Che Chen, Chih-Chun Hsieh, Weite Wu, Met. Mater. Int. 13 (3), 201 (2007).
[20] G uanghui Min, J.M. Lee, S.B. Kang, H.W. Kim, Mater. Letters 60, 3255 (2006).
[21] S.H. Lee, C.S. Kang, Korean J. Met. Mater. 49 (11), 893 (2011).
[22] S.H. Lee, J.H. Kim, Korean J. Met. Mater. 51 (4), 251 (2013).
[23] H. Kuhn, D. Medlin, Mechanical Testing and Evaluation, ASM Handbook, ASM International 8, 71 (2000).
[24] G .E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw- Hill Book Company, London, 71 (2001).
Go to article

Authors and Affiliations

Sang-Hyeon Jo
1
ORCID: ORCID
Seong-Hee Lee
1
ORCID: ORCID

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-Gun, Jeonnam 58554, Korea

Authors and Affiliations

Sang-Hyeon Jo
1
ORCID: ORCID
Seong-Hee Lee
1
ORCID: ORCID

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-gun , Jeonnam 58554, Korea
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the improvement in the electrical conductivity and mechanical properties obtained by adjusting the amount of the Sr addition to the Al-Zn-Mg-Mn alloy. The addition of Sr formed an intermetallic compounds, and the volume fraction of the intermetallic compounds increased with increasing Sr content. As the amount of Sr added increased from 0 to 1.0 wt%, the electrical conductivity of the extruded alloy decreased to 48.9, 45.2 and 42.5% IACS. As the addition amount of Sr increased, the average grain size of the rolled alloy decreased to 55.5, 53.1 and 42.3 μm. And, the ultimate tensile strength increased to 195, 212 and 216 MPa.
Go to article

Authors and Affiliations

Hyo-Sang Yoo
1 2
ORCID: ORCID
Yong-Ho Kim
1
ORCID: ORCID
Byoung-Kwon Lee
1
ORCID: ORCID
Eun-Chan Ko
1
ORCID: ORCID
Sang-Chan Lee
2
ORCID: ORCID
Seong-Hee Lee
2
ORCID: ORCID
Hyeon-Taek Son
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Automotive Materials & Components R&D Group, 1110-9 Oryong-dong, Buk-gu, Gwangju 61012, Republic of Korea
  2. Mokpo National University, Jeollanamdo, Republic of Korea

This page uses 'cookies'. Learn more