Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the microstructures and the mechanical properties of equiatomic Ti20Mo20Ta20Nb20V20 and non-equiatomic Ti40Mo15Ta15Nb15V15 and Ti60Mo10Ta10Nb10V10 HEAs using X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), and micro-Vickers hardness test. The specimens were fabricated using the vacuum arc remelting (VAR) process and homogenized at a temperature of 1300°C for 4 h in a vacuum atmosphere. The determined thermodynamic parameters, Ω ≥ 1.1, δ ≤ 6.6%, and VEC < 6.87, suggested that the HEAs consisted of BCC solid solutions. XRD patterns of all the HEAs displayed single BCC phases. The difference in the solidification rate led to the micro-segregation associated with the elements Ta and Mo enriched in the dendrite arms and the elements V and Ti in the inter-dendritic regions. The HEA specimens showed a decrease in hardness with higher concentration of Ti element because the intrinsic hardness of Ti is lower as compared to the intrinsic hardness of Nb and Mo.

Go to article

Authors and Affiliations

Seongi Lee
Kwangmin Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10Cr10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10–4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Go to article

Authors and Affiliations

Hocheol Song
Seongi Lee
Kwangmin Lee
ORCID: ORCID

This page uses 'cookies'. Learn more