Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this research, we investigated the effects of reduction atmospheres on the creation of the Mo-Si-B intermetallic compounds (IMC) during the heat treatments. For outstanding anti-oxidation and elevated mechanical strength at the ultrahigh temperature, we fabricated the uniformly dispersed IMC powders such as Mo5SiB2 (T2) and Mo3Si (A15) phases using the two steps of chemical reactions. Especially, in the second procedure, we studied the influence of the atmospheres (e.g. vacuum, argon, and hydrogen) on the synthesis of IMCs during the reduction. Furthermore, the newly produced IMCs were observed by SEM, XRD, and EDS to identify the phase of the compounds. We also calculated an amount of IMCs in the reduced powders depending on the atmosphere using the Reitveld refinement method. Consequently, it is found that hydrogen atmosphere was suitable for fabrication of IMC without other IMC phases.

Go to article

Authors and Affiliations

Jung Hyo Park
Seong Lee
Donghoon Kim
Youngmoo Kim
Sung Ho Yang
Sung Ho Lee
Download PDF Download RIS Download Bibtex

Abstract

In this study, the extrusion characteristics of Al-2Zn-1Cu-0.5Mg-0.5RE alloys at 450, 500, and 550℃ were investigated for the high formability of aluminum alloys. The melt was maintained at 720℃ for 20 minutes, then poured into the mold at 200℃ and hot-extruded with a 12 mm thickness bar at a ratio of 38:1. The average grain size was 175.5, 650.1, and 325.9 μm as the extrusion temperature increased to 450, 500 and 550℃, although the change of the phase fraction was not significant as the extrusion temperature increased. Cube texture increased with the increase of extrusion temperature to 450, 500 and 550℃. As the extrusion temperature increased, the electrical conductivity increased by 47.546, 47.592 and 47.725%IACS, and the tensile strength decreased to 92.6, 87.5, 81.4 MPa. Therefore, the extrusion temperature of Al extrusion specimen was investigated to study microstructure and mechanical properties.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Kyu-Seok Lee
Sung-Ho Lee
Hyeon-Taek Son
ORCID: ORCID

This page uses 'cookies'. Learn more