Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The non linearities in the motor of an electrodynamic loudspeaker are still a discussed topic. This paper studies the influence of the force factor variation with the coil displacement on the harmonic and inter-modulation distortions. The real variation is described at least by a linear and a quadratic term. The effect of each term is studied separately, as they don't influence the same kind of frequencies, harmonics or inter-modulation. Both terms considered together result in enhanced effects. The dissymmetry of the Bl variation with regard to the coil centered position has also peculiar effects. This paper presents the method developed to calculate the power of each harmonic and inter-modulation frequency. This allows to compare the obtained values and thus the induced nonlinearities.

Go to article

Authors and Affiliations

Mehran Erza
Valérie Lemarquand
Guy Lemarquand
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present a way of ranking the nonlinearities of electrodynamic loudspeakers. For this purpose, we have constructed a nonlinear analytic model which takes into account the variations of the small signal parameters. The determination of these variations is based on a very precise measurement of the electrical impedance of the electrodynamic loudspeaker. First, we present the experimental method to identify the variations of these parameters, then we propose to study theoretically the importance of these nonlinearities according to the input level or the input frequency. We show that the parameter which creates most of the distortions is not always the same and depends mainly on both the input level and the input frequency. Such results can be very useful for optimization of electrodynamic loudspeakers.

Go to article

Authors and Affiliations

Romain Ravaud
Guy Lemarquand
Valérie Lemarquand
Tangi Roussel
Download PDF Download RIS Download Bibtex

Abstract

Sound processing with loudspeaker driving depends critically on high quality electroacoustic transducers together with their relevant amplifiers. In this paper, the nonlinear effects of electrodynamic loudspeakers are investigated as regard the influence of the changes of their main descriptive parameters values. Indeed, while being operated nonlinear effects observed with loudspeakers are due to changes of such constitutive parameters. Regarding either current or voltage-drive, an original model based on Simulink R is presented, taking account of all the electrical and mechanical properties closely associated with nonlinear behaviours. Moreover, as such a Simulink R model may be combined with the PSpice R advanced software, the behaviour of both loudspeaker and amplifier can be exhaustively investigated and optimized. To this end, the amplifier is simulated thanks to the Orcad-Capture-PSpiceR software prior to match with the loudspeaker model with the so-called SLPS co-simulator. Then, values of the current flowing through the loudspeaker can be determined and plotted considering voltage controlling. Obviously in this case current-drive has not to be assessed. This way to proceed allows us to highlight any critical information especially due to the voice coil displacement, yielded velocity, and acceleration of the diaphragm. Indeed our approach testifies to the imperative necessity of mechanical measurements together with electrical ones. Then, considering a given amplifier-loudspeaker association with specific parameters changes of the latter, the entailed nonlinear distortion allows us to qualify and criticize the whole design. Such an original approach should be most valuable so as to match the best fitted amplifier with a given electrodynamic loudspeaker. Then non linear effects due to voltage and current-drive are compared highlighting the advantages of an apt currentcontroled policy.

Go to article

Authors and Affiliations

Mehran Erza
Etienne Gaviot
Guy Lemarquand
Pascal Tournier
Lionel Camberlein
Stephane Durand
Frederic Polet

This page uses 'cookies'. Learn more