Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In order to overcome the shortcomings of the dolphin algorithm, which is prone to falling into local optimum and premature convergence, an improved dolphin swarm algorithm, based on the standard dolphin algorithm, was proposed. As a measure of uncertainty, information entropy was used to measure the search stage in the dolphin swarm algorithm. Adaptive step size parameters and dynamic balance factors were introduced to correlate the search step size with the number of iterations and fitness, and to perform adaptive adjustment of the algorithm. Simulation experiments show that, comparing with the basic algorithm and other algorithms, the improved dolphin swarm algorithm is feasible and effective.

Go to article

Authors and Affiliations

Y. Li
X. Wang
Download PDF Download RIS Download Bibtex

Abstract

The pharmacokinetics of a diclofenac sodium was investigated in swine. A single intravenous (i.v.) or intramuscular (i.m.) injection of 5% diclofenac sodium (concentration = 2.5 mg · kg-1) was administered to 8 healthy pigs according to a two-period crossover design. The pharmacokinetic parameters were calculated by non-compartmental analysis with DAS2.1.1 software. After a single i.v. administration, the main pharmacokinetic parameters of diclofenac sodium injection in swine were as follows: the elimination half-time (T1/2β) was 1.32±0.34 h; the area under the curve (AUC) was (55.50±5.50 μg · mL-1 h; the mean residence time (MRT) was 1.60±0.28 h; the apparent volume of distribution (Vd) was 0.50±0.05 L · kg-1; and the body clearance (CLB) was 0.26±0.04 L · (h · kg)-1. After the single i.m. administration, the pharmacokinetic parameters were as follows: peak time (Tmax) was 1.19±0.26 h; and peak concentration (Cmax) was 11.61±5.99 μg mL-1. The diclofenac sodium has the following pharmacokinetic characteristics in swine: rapid absorption and elimination; high peak concentration; and bioavailability.

Go to article

Authors and Affiliations

H.F. Yang
Y.J. Li
Y.Y. Li
C. Huang
L.X. Huang
S.J. Bu
Download PDF Download RIS Download Bibtex

Abstract

The main work of this paper focuses on the simulation of binary alloy solidification using the phase field model and adaptive octree grids.

Ni-Cu binary alloy is used as an example in this paper to do research on the numerical simulation of isothermal solidification of binary

alloy. Firstly, the WBM model, numerical issues and adaptive octree grids have been explained. Secondary, the numerical simulation

results of three dimensional morphology of the equiaxed grain and concentration variations are given, taking the efficiency advantage of

the adaptive octree grids. The microsegregation of binary alloy has been analysed emphatically. Then, numerical simulation results of the

influence of thermo-physical parameters on the growth of the equiaxed grain are also given. At last, a simulation experiment of large scale

and long-time has been carried out. It is found that increases of initial temperature and initial concentration will make grain grow along

certain directions and adaptive octree grids can effectively be used in simulations of microstructure.

Go to article

Authors and Affiliations

Y. Yin
Y. Li
K. Wu
J. Zhou
Download PDF Download RIS Download Bibtex

Abstract

The distortion of air gap magnetic field caused by the rotor eccentricity contributes to the electromechanical coupling vibration of the brushless DC (BLDC) permanent magnet in-wheel motor (PMIWM) in electric vehicles (EV). The comfort of the BLDC in-wheel motor drive (IWMD) EV is seriously affected. To deeply investigate the electromechanical coupling vibration of the PMIWM under air gap eccentricity, the PMIWM, tyre and road excitation are analyzed first. The influence of air gap eccentricity on air gap magnetic density is investigated. The coupling law of the air gap and the unbalanced magnetic force (UMF) is studied. The coupling characteristics of eccentricity rate, air gap magnetic density, UMF, phase current and vibration acceleration are verified on the test bench in the laboratory. The mechanism of the electromechanical coupling vibration of the BLDC PMIWM under air gap static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE) is revealed. DE and HE deteriorate the vibration acceleration amplitude, which contributes the electromechanical coupling vibration of the PMIWM. The research results provide a solid foundation for the vibration and noise suppression of the PMIWM in distributed drive EV.

Go to article

Authors and Affiliations

Y. Li
H. Wu
X. Xu
Y. Cai
X. Sun
Download PDF Download RIS Download Bibtex

Abstract

Osteocalcin is a major non-collagenous component of the bone extracellular matrix and is considered to be an indicative factor of osteoblast differentiation. In the present study, we detected osteocalcin expression in different antler areas and growth phases by immunohisto- chemistry. Osteocalcin was highly expressed in all areas during the mineralization period and in mesenchymal cell and chondrocyte areas during the rapid growth period. The nucleotide sequence of the osteocalcin gene in sika deer antler was determined. The open reading frame was 303 bp encoding a protein of 100 amino acids. The estimated molecular mass of osteocalcin was 10.38 kDa and the theoretical isoelectric point was 5.37. The osteocalcin gene with a 6× His-tag at the C-terminus was cloned into the pGEX-4T1 vector and expressed in Escherichia coli under optimal conditions. The recombinant soluble protein fused with GST was purified with Ni-NTA resin. The purified osteocalcin protein exhibited a significant increase in HA adhesion and promoted antler chondrocyte proliferation. Osteocalcin is an important factor in regulating the rapid growth and differentiation of deer antlers.

Go to article

Authors and Affiliations

X. Li
M. Liu
X. Bai
Y. Li
Y. Zhao
S. Wang
J. Wang
Download PDF Download RIS Download Bibtex

Abstract

Porcine parvovirus (PPV) is a major causative agent in reproductive pig disease. The swine industry faces a significant economic and epizootic threat; thus, finding a reliable, quick, and practical way to detect it is essential. In this investigation, recombinant PPV VP2 protein was expressed in the Escherichia coli ( E. coli) expression systems. As shown by electron microscopy (TEM), Western blot, and hemagglutination (HA) assays, the recombinant VP2 protein was successfully assembled into virus-like particles (VLPs) after being expressed and purified. These VLPs had a structure that was similar to that of real PPV viruses and also exhibited HA activity. These VLPs induced high levels of PPV-specific antibody titers in mice after immunization, indicating that the VLPs may be beneficial as potential candidate antigens. VLPs were used as the coating antigens for the VLP ELISA, and the PPV VLPs-based ELISA displayed a high sensitivity (99%), specificity (93.0%) and agreement rate (98.3%) compared to HI assay, and the agreement rate of this ELISA was 97.5% compared to a commercial ELISA kit. Within a plate, the coefficient of variation (CV) was 10%, and between ELISA plates, the CV was 15%. According to a cross-reactivity assay, the technique was PPV-specific in contrast to other viral illness sera. The PPV VLP indirect-ELISA test for PPV detection in pigs with an inactivated vaccine showed that the PPV-positive rate varied among different sample sources from 88.2 to 89.6%. Our results indicate that this ELISA technique was quick, accurate, and repeatable and may be used for extensive serological research on PPV antibodies in pigs.
Go to article

Bibliography

1. Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, Krakowka SJ, Meehan BM, Adair BM (1999) Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121(1): 1-11.
2. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecu-lar screening of respiratory tract samples. Proc Natl Acad Sci U S A 102(36): 12891-12896.
3. Cartwright SF, Lucas M, Huck RA (1971) A small haemaggultinating porcine DNA virus. II. Biological and serological studies. J Comp Pathol 81(1): 145-155.
4. Choi C, Chae C (2000) Distribution of porcine parvovirus in porcine circovirus 2-infected pigs with postweaning multisystemic wasting syndrome as shown by in-situ hybridization. J Comp Pathol 123(4): 302-305.
5. Crowther JR (2000) The ELISA guidebook. Methods Mol Biol 149: III-IV, 1-413.
6. Ellis JA, Bratanich A, Clark EG, Allan G, Meehan B, Haines DM, Harding J, West KH, Krakowka S, Konoby C, Hassard L, Martin K, McNeilly F (2000) Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystem-ic wasting syndrome. J Vet Diagn Invest 12(1): 21-27.
7. Feng H, Hu GQ, Wang HL, Liang M, Liang H, Guo H, Zhao P, Yang YJ, Zheng XX, Zhang ZF, Zhao YK, Gao YW, Yang ST, Xia XZ (2014) Canine parvovirus VP2 protein expressed in silkworm pupae self-assembles into virus-like particles with high immunogenic-ity. PLoS One 9(1): e79575.
8. Hohdatsu T, Baba K, Ide S, Tsuchimoto M, Nagano H, Yamagami T, Yamagishi H, Fujisaki Y, Matumoto M (1988) Detection of anti-bodies against porcine parvovirus in swine sera by enzyme-linked immunosorbent assay. Vet Microbiol 17(1): 11-19.
9. Hua T, Zhang D, Tang B, Chang C, Liu G, Zhang X (2020) The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 248: 108795.
10. Jenkins CE (1992) An enzyme-linked immunosorbent assay for detection of porcine parvovirus in fetal tissues. J Virol Methods 39(1-2): 179-184.
11. Ji P, Liu Y, Chen Y, Wang A, Jiang D, Zhao B, Wang J, Chai S, Zhou E, Zhang G (2017) Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs. Antiviral Res 139: 146-152.
12. Joo HS, Donaldson-Wood CR, Johnson RH (1976) A standardised haemagglutination inhibition test for porcine parvovirus antibody. Aust Vet J 52(9): 422-424.
13. Jozwik A, Manteufel J, Selbitz HJ, Truyen U (2009) Vaccination against porcine parvovirus protects against disease, but does not pre-vent infection and virus shedding after challenge infection with a heterologous virus strain. J Gen Virol 90(Pt 10): 2437-2441.
14. Kennedy S, Moffett D, McNeilly F, Meehan B, Ellis J, Krakowka S, Allan GM (2000) Reproduction of lesions of postweaning multi-systemic wasting syndrome by infection of conventional pigs with porcine circovirus type 2 alone or in combination with porcine parvo-virus. J Comp Pathol 122(1): 9-24.
15. Kong M, Peng Y, Cui Y, Chang T, Wang X, Liu Z, Liu Y, Zhu Y, Luo Y, Tang Q, Feng L, Cui S (2014) Development and evaluation of the rVP-ELISA for detection of antibodies against porcine parvovirus. J Virol Methods 206: 115-118.
16. Marcekova Z, Psikal I, Kosinova E, Benada O, Sebo P, Bumba L (2009) Heterologous expression of full-length capsid protein of por-cine circovirus 2 in Escherichia coli and its potential use for detection of antibodies. J Virol Methods 162(1-2): 133-141.
17. Mengeling WL, Cutlip RC (1976) Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus. Am J Vet Res 37(12): 1393-1400.
18. Mengeling WL, Lager KM, Vorwald AC (2000) The effect of porcine parvovirus and porcine reproductive and respiratory syndrome vi-rus on porcine reproductive performance. Anim Reprod Sci 60-61: 199-210.
19. Meszaros I, Olasz F, Csagola A, Tijssen P, Zadori Z (2017) Biology of porcine parvovirus (Ungulate parvovirus 1). Viruses 9(12): 393.
20. Oravainen J, Hakala M, Rautiainen E, Veijalainen P, Heinonen M, Tast A, Virolainen JV, Peltoniemi OA (2006) Parvovirus antibodies in vaccinated gilts in field conditions-results with HI and ELISA tests. Reprod Domest Anim 41(1): 91-93.
21. Oravainen J, Heinonen M, Tast A, Virolainen J, Peltoniemi O (2005) High porcine parvovirus antibodies in sow herds: prevalence and associated factors. Reprod Domest Anim 40(1): 57-61.
22. Qing L, Lv J, Li H, Tan Y, Hao H, Chen Z, Zhao J, Chen H (2006) The recombinant nonstructural polyprotein NS1 of porcine parvovi-rus (PPV) as diagnostic antigen in ELISA to differentiate infected from vaccinated pigs. Vet Res Commun 30(2): 175-190.
23. Roic B, Cajavec S, Toncic J, Madic J, Lipej Z, Jemersic L, Lojkic M, Mihaljevic Z, Cac Z, Sostaric B (2005) Prevalence of antibodies to porcine parvovirus in wild boars (Sus scrofa) in Croatia. J Wildl Dis 41(4): 796-799.
24. Shang SB, Li YF, Guo JQ, Wang ZT, Chen QX, Shen HG, Zhou JY (2008) Development and validation of a recombinant capsid pro-tein-based ELISA for detection of antibody to porcine circovirus type 2. Res Vet Sci 84(1): 150-157.
25. Streck AF, Canal CW, Truyen U (2015) Molecular epidemiology and evolution of porcine parvoviruses. Infect Genet Evol 36: 300-306.
26. Westenbrink F, Veldhuis MA, Brinkhof JM (1989) An enzyme-linked immunosorbent assay for detection of antibodies to porcine par-vovirus. J Virol Methods 23(2): 169-178.
27. Xu Y, Li Y (2007) Induction of immune responses in mice after intragastric administration of Lactobacillus casei producing porcine par-vovirus VP2 protein. Appl Environ Microbiol 73(21): 7041-7047.
28. Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U (2007) Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol 88(Pt 2): 420-427.
29. Zheng HH, Wang LQ, Fu PF, Zheng LL, Chen HY, Liu F (2020) Characterization of a recombinant pseudorabies virus expressing por-cine parvovirus VP2 protein and porcine IL-6. Virol J 17(1): 19.
Go to article

Authors and Affiliations

Y. Li
1
Q. Wang
2
W. Yue
1
X. Li
1
Y. Chen
1
Y. Gao
1

  1. Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.); No.25 Xiangrui Street Daxing District, Beijing 102600 China
  2. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
Download PDF Download RIS Download Bibtex

Abstract

Objective: This study aimed to investigate developmental changes of the thymus and intra- thymic IL-1β, IL-6 and TNF-α expression in weaned Sprague-Dawley rats induced by lipopolysac- charide.

Methods: Forty healthy weaned rats aged 26 days and weighing 83±4 g were randomly and equally divided into two groups. The lipopolysaccharide group was treated daily with a single injection of lipopolysaccharide for 10 consecutive days, and the saline group was treated with an equal volume of sterilized saline. On the 1st, 4th, 7th and 10th day, histological changes and distribu- tion of IL-1β-, IL-6- and TNF-α-positive cells were detected in the thymus by hematoxylin-eosin and immunohistochemistry staining, respectively. Subsequently, the expression levels of IL-1β, IL-6 and TNF-α were evaluated in the thymus by the ELISA method.

Results: Thymus weight and index were significantly smaller in lipopolysaccharide-treated rats than in saline-treated rats (p<0.05), but no substantial changes were found in the thymus microstructure after lipopolysaccharide induction. Moreover, a large number of IL-1β-, IL-6- and TNF-α-positive cells were observed with brownish-yellow color and mainly distributed in the thy- mus parenchyma, both integrated optical density and average optical density increased signifi- cantly in lipopolysaccharide-treated rats than those in saline-treated rats. Compared with the saline group, most of the thymic homogenates had higher levels of IL-1β, IL-6 and TNF-α in the lipopolysaccharide group on different days.

Conclusion: These findings indicate that the thymus atrophied after lipopolysaccharide induction in weaned Sprague-Dawley rats, and excessive production of intrathymic IL-1β, IL-6 and TNF-α was probably involved in the atrophic process.

Go to article

Authors and Affiliations

Y.B. Zhong
X.L. Zhang
M.Y. Lv
X.F. Hu
Y. Li
Download PDF Download RIS Download Bibtex

Abstract

Goose astrovirus (GoAstV) is a novel avastrovirus that typically causes gosling gout and results in 2 to 20% mortality. GoAstV capsid protein is the sole structural protein, which is responsible for viral attachment, assembly, maturation as well as eliciting host antibodies. However, the epitopes within capsid protein have not been well studied. In this study, a monoclonal antibody, named 1D7, was generated against GoAstV capsid protein by hybridoma technology. Western blot results showed that this MAb could react with recombinant capsid protein expressed in E. coli. Also, it recognized the precursor of capsid protein, VP90 and VP70, in GoAstV-infected cells. Besides, excellent specificity of MAb 1D7 was further demonstrated in indirect immunofluorescence assay and immunohistochemical analysis. Epitope mapping results revealed that MAb 1D7 recognized the epitope 33QKVY 36 within Cap protein. Sequence alignment indicated that 33QKVY 36 is a conserved epitope among the isolates of goose astrovirus type 2 (GoAstV-2), suggesting the potential for its use in GoAstV-2 specific diagnostic assay. These findings may provide some insight into a function of the GoAstV capsid protein and further contribute to the development of diagnostic methods for GoAstV infection.
Go to article

Authors and Affiliations

G. Dai
1 2 3
X. Huang
1 3
Q. Liu
1 3
Y. Li
1 3
L. Zhang
1 3
K. Han
1 3
J. Yang
1 3
Y. Liu
1 3
F. Xue
2
D. Zhao
1 2 4 3

  1. Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, PR China
  2. College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Tongwei Road, Nanjing City, Jiangsu Province 210095, PR China
  3. Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing City, Jiangsu Province, 210014, PR China
  4. Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, PR China
Download PDF Download RIS Download Bibtex

Abstract

The welfare and healthy growth of poultry under intensive feeding conditions are closely related to their living environment. In spring, the air quality considerably decreases due to reduced ventilation and aeration in cage systems, which influences the meat quality and health of broilers during normal growth stages. In this study, we analyzed the airborne bacterial communities in PM2.5 and PM10 in cage broiler houses at different broiler growth stages under intensive rearing conditions based on the high-throughput 16S rDNA sequencing technique. Our results revealed that PM2.5, PM10 and airborne microbes gradually increased during the broiler growth cycle in poultry houses. Some potential or opportunistic pathogens, including Acinetobacter, Pseudomonas, Enterococcus, Microbacterium, etc., were found in the broiler houses at different growth stages. Our study evaluated variations in the microbial communities in PM2.5 and PM10 and potential opportunistic pathogens during the growth cycle of broilers in poultry houses in the spring. Our findings may provide a basis for developing technologies for air quality control in caged poultry houses.

Go to article

Authors and Affiliations

J. Zhang
Y. Li
E. Xu
L. Jiang
J. Tang
M. Li
X. Zhao
G. Chen
H. Zhu
X. Yu
X. Zhang
Download PDF Download RIS Download Bibtex

Abstract

In this study, a SYBR Green-based real-time quantitative polymerase chain reaction (qPCR) assay was developed for rapid detection of porcine parvovirus (PPV) 6. Primer pairs targeting the conserved regions of PPV6 Capsid gene were designed. Sensitivity analyses revealed the lowest detection limit of the SYBR Green-based real-time PCR assay to be 47.8 copies/μL, which indicated it was 1000 times higher than that found in the conventional PCR investigations. This assay was specific and showed no cross-species amplification with other six porcine viruses. The assay demonstrated high repeatability and reproducibility; the intra- and inter-assay coefficients of variation were 0.79% and 0.42%, respectively. The positive detection rates of 180 clinical samples with SYBR Green-based real-time PCR and conventional PCR were 12.22% (22/180) and 4.44% (8/180), respectively. Our method is sensitive, specific, and reproducible. The use of SYBR Green-based real-time PCR may be suitable for the clinical detection and epidemiological investigation of PPV6.

Go to article

Authors and Affiliations

P. Sun
C.X. Bai
D. Zhang
J. Wang
K.K. Yang
B.Z. Cheng
Y.D. Li
Y. Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Pseudorabies (PR) outbreaks have devastated many swine farms in several parts of China since late 2011. The outbreak-associated pseudorabies virus (PRV) variant strains exhibited some typical amino acid changes in glycoprotein E (gE), a diagnostic antigen used for discriminating between PRV-infected and vaccinated animals (DIVA). To counteract the potential impact of epitope variations on current serological diagnostics of PRV, we produced monoclonal antibodies (mAbs) against gE protein of one representative PRV variant strain and developed a blocking immunoperoxidase monolayer assay (b-IPMA) for DIVA. The b-IPMA was based on the inhibition of binding between PRV-infected cells and mAb by PRV-specific antibodies present in clinical swine sera and was validated by comparison with a commercial PRV gpI Antibody Test Kit (IDEXX Laboratories, USA). The diagnostic sensitivity, diagnostic specificity and agreement were determined to be 99.25%, 98.18% and 99.02% respectively upon testing 509 serum samples. b-IPMA detected only PRV-specific antibodies and showed no cross- -reactivity with antibodies elicited by gE-deleted vaccine or other common swine pathogens. Thus, b-IPMA has the potential to be used for high-throughput screening of PRV-infected animals in veterinary clinics.

Go to article

Authors and Affiliations

Y.B. Wang
Y.H. Li
Q.M. Li
W.T. Xie
C.L. Guo
J.Q. Guo
R.G. Deng
G.P. Zhang
Download PDF Download RIS Download Bibtex

Abstract

In order to compare the pathogenicity of different Tembusu virus (TMUV) strains from geese, ducks and chickens, 56 5-day-old Cherry Valley ducklings which were divided into 7 groups and infected intramuscularly with 7´105 PFU/ml per duck of six challenge virus stocks. The clinical signs, weight gain, mortality, macroscopic and microscopic lesions, virus loads in sera of 1, 3, 5, 7, 11 and 14 dpi and serum antibody titers were examined. The results showed that these viruses could make the young ducks sick, but the clinical signs differed with the different species-original strains. All the experimental groups lose markedly in weight gain compared to the control, but there were no obvious distinctions in weight gains, as well as macroscopic and microscopic lesions of dead ducks between the infected groups. However, the groups of waterfowl-derived strains (from geese and ducks) showed more serious clinical signs and higher relative expressions of virus loads in sera than those from chicken-derived. The mortality of waterfowl groups was 37.5%, and the greatest mortality of chicken groups was 12.5%. The serum antibodies of the geese-species group JS804 appeared earlier and were higher in the titers than others. Taken toghter, the pathogenicity of waterfowl-derived TMUV was more serious than chicken-derived TMUV and JS804 could be chosen as one TMUV vaccine strain to protect from the infection.
Go to article

Authors and Affiliations

Y. Li
Q. Liu
T. Xu
X. Huang
X. Liu
K. Han
Y. Liu
J. Yang
D. Zhao
K. Bi
W. Sun
Download PDF Download RIS Download Bibtex

Abstract

In this study, we developed a SYBR Green I real-time PCR method for the rapid and sensitive detection of novel porcine parvovirus 7 (PPV7). Specific primers were designed based on the highly conserved region within the Capsid gene of PPV7. The established method was 1,000 times more sensitive than the conventional PCR method and had a detection limit of 35.6 copies. This method was specific and had no cross-reactions with PCV2, PCV3, PRV, PEDV, PPV1, and PPV6. Experiments testing the intra and interassay precision demonstrated a high reproducibility. Testing the newly established method with 200 clinical samples revealed a detection rate up to 17.5% higher than that of the conventional PCR assay. The established method could provide technical support for clinical diagnosis and epidemiological investigation of PPV7.
Go to article

Authors and Affiliations

Y.D. Li
1
Z.D. Yu
2
C.X. Bai
2
D. Zhang
2
P. Sun
2
M.L Peng
2
H. Liu
3
ORCID: ORCID
J. Wang
4
Y. Wang
2
ORCID: ORCID

  1. Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China
  2. Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
  3. Anhui Animal Diseases Prevention and Control Center and Key Laboratory of Veterinary Pathobiology and Disease Prevention and Control of Anhui Province, Hefei 230091, PR China
  4. Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Hebei 075000, PR China

This page uses 'cookies'. Learn more